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ABSTRACT: This paper proposes a sparse array consisting of two separate generalized nested arrays. The unit element-spacing of each
generalized nested array can be adjusted to multiple half-wavelengths of the incident signal. By adjusting the element-spacing, the mutual
coupling effect can be greatly reduced. For this array, a direction of arrival (DOA) estimation method of quasi-stationary signals has also
been proposed. By using the received signals of the separated generalized nested array, a signal subspace is obtained. Then, this subspace
is filled into a higher-order signal subspace to avoid angle ambiguity. Using the higher-order signal subspace, DOAs of all signals can be
estimated by spectral peak search. Simulation results show that the proposed separated generalized nested array has better performance
than the conventional nested array in DOA estimation.

1. INTRODUCTION

Direction of arrival (DOA) estimation technique for spatial
signals is widely used in many fields, such as mobile com-

munication and radar positioning. Many classical algorithms
including multiple signal classification (MUSIC) [1, 2] and es-
timation of signal parameters via rotational invariance tech-
niques (ESPRIT) [3] have been proposed based on stationary
signals. In fact, perfectly stationary signals are almost nonex-
istent. However, some non-stationary signals whose statisti-
cal properties can remain stable for a certain period are called
quasi-stationary signals. At present, there are many methods
to estimate the DOAs for quasi-stationary signals, the most
common being Khatri-Rao multiple signal classification (KR-
MUSIC) [4], tensormodeling [5], and sparse reconstruction [6].
In recent years, sparse arrays have been widely used in DOA

estimation. Nested array [7] is one of the popular sparse ar-
rays, which has a higher degree of freedom than the coprime
array [8]. Many DOA estimation algorithms [9–11] for quasi-
stationary signals by varying nested arrays have also been pro-
posed. However, the traditional nested array includes a uniform
subarray with element-spacing being half-wavelength of the in-
cident signal. In practice, there will be a strongmutual coupling
effect in this subarray. In [12], a sparse array consisting of mul-
tiple uniform arrays with adjustable element-spacing has been
proposed and shows excellent performance in reducing mutual
coupling. However, it is difficult for this array to use virtual
elements to improve the degree of freedom of the array as the
traditional sparse array.
To reduce the mutual coupling of an array, a separated gen-

eralized nested array with adjustable element-spacing is pro-
posed. Based on this array, a special DOA estimation algorithm
for quasi-stationary signals is proposed. The contributions of
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the paper are twofold: 1) Compared with conventional nested
array, the proposed array has strong robustness to mutual cou-
pling due to the adjustable element-spacing; 2) the algorithm
based on the proposed nested array shows higher estimation
accuracy than the analogous method based on the conventional
nested array.

Symbol description In this paper, we use (·)T , (·)∗,(·)H ,
(·)+, ⊗ and E{·} to define transpose, conjugate, conjugate
transpose, Moore-Penrose generalized inverse, Kronecker
product and expectation, respectively. We also use V(i : j) to
choose the ith row to the jth row of the matrix V. In addition,
IF denotes an F -order unit matrix, and JF denotes an F -order
matrix with the elements on the back-diagonal being 1 and the
other elements being 0.

2. DESCRIPTION OF ALGORITHM

2.1. Array Geometry and Data Model
Consider a separated generalized nested array shown in
Fig. 1, where p (p > 1) is an integer, d = λ/2, and
λ is the wavelength of the incident signal. Let the first
element be the reference element. The distances be-
tween all the elements and the reference element are
0, pd, . . . , (N − 1)pd, Np, (2N + 1)pd, . . . , [M(N +
1)− 1]pd, [2M(N +1)p− p+1]d, [2M(N +1)p+1]d, . . .,
and [3M(N + 1)p− 2p+ 1]d in order.
Suppose that the number of signals is K and that

the DOA of the kth signal is θk (k = 1, 2, . . . ,K).
The signal vectors received by the two subarrays are
x1(t) = [x1,1(t), x1,2(t), . . ., x1,N (t), x1,N+1(t),
x1,N+2(t), . . ., x1,N+M (t)]T ∈ C(M+N)×1 and
x2(t) = [x2,1(t), x2,2(t), . . ., x2,N (t), x2,N+1(t), x2,N+2(t),
. . ., x2,N+M (t)]T ∈ C(M+N)×1.
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FIGURE 1. Schematic diagram of the proposed separated nested array.

Denote n1 = [n1,1, n1,2, . . ., n1,N+M ]T ∈ C(M+N)×1 and
n2 = [n2,1, n2,2, . . . , n2,N+M ]T ∈ C(M+N)×1 as the uncorre-
lated noise vectors received by the two subarrays. Then x1(t)
and x2(t) can be expressed by{

x1(t) = A1s(t) + n1(t)
x2(t) = A2s(t) + n2(t)

(1)

where A1 = [a1(θ1), a1(θ2), . . . , a1(θK)] ∈ C(M+N)×K with

a1(θk) = [1, . . . , e−i 2π
λ (N−1)pd sin θk , e−i 2π

λ Npd sin θk ,

. . . , e−i 2π
λ [M(N+1)−1]pd sin θk ]T

andA2 = [a2(θ1), a2(θ2), . . . , a2(θK)] ∈ C(M+N)×K with

a2(θk) = [e−i 2π
λ [2M(N+1)p−p+1]d sin θk ,

. . . , e−i 2π
λ [3M(N+1)p−2p+1]d sin θk ]T

for k = 1, 2, . . . ,K .
Let F be the number of frames and L be the snapshots of

each frame. The total number of snapshots is T = FL. We

denote three covariance vectors as rf1,1 ∈ C(D+1
2 )×1, rf2,1 ∈

C(D+1
2 )×1 and rf2,2 ∈ C(D+1

2 )×1 for the f th frame. The jth
components of rf1,1, rf2,1, and rf2,2 are given by

rf1,1(j) = E{x1,N+1+j1(t)x
∗
1,N+2−j2

(t)}
rf2,1(j) = E{x2,j2(t)x

∗
1,N+M−j1

(t)}, j = 1, . . . , D+1
2

rf2,2(j) = E{x2,N+1+j1(t)x
∗
1,N+2−j2

(t)}

(2)
whereD = 2M(N +1)−1, and j is the uniquely decomposed
by j = j1(N + 1) + j2 with 1 ≤ j2 ≤ N + 1.
The vectors rf1,1, rf2,1, and rf2,2 can be estimated by the

sample data in the f th frame according to (2).

Using rf1,1, we can construct a vector rf1,2 ∈ C(D+1
2 )×1 by

rf1,2 = J(D+1
2 )r

∗
f1,1. (3)

We continue to construct a vector rf1 ∈ CD×1 as

rf1 =

[
rf1,2

(
1 : D−1

2

)
rf1,1

]
. (4)

Using rf2,1 and rf2,2, we can construct a vector rf2 ∈ CD×1

as

rf2 =

[
rf2,1

(
1 : D−1

2

)
rf2,2

]
. (5)

Let rf3 = JDr∗f2, and we can get a non-redundancy covari-

ance vector rf ∈ C3D×1 by

rf =

 rf3
rf1
rf2

 . (6)

Let σ2
n be the power of noise and pfk be the power of the kth

signal in the f th frame. Then, as [4], a non-redundancy covari-
ance matrix Y = [r1, r2, . . . , rF ] ∈ C3D×F can be obtained
and expressed by

Y=

 B3

B1

B2

ΦT +


0 0 . . . 0
...

...
...

...
σ2
n σ2

n . . . σ2
n

...
...

...
...

0 0 . . . 0

 , (7)

where

Φ =


p11 p12 . . . p1K
p21 p22 . . . p2K
...

...
. . .

...
pF1 pF1 . . . pFK

 , (8)

B1 = [b1(θ1), b1(θ2), . . . , b1(θK)] ∈ CD×K with

b1(θk) = [ei
2π [M(N+1)−1]p

λ d sin θk , . . . , ei
2π
λ pd sin θk , 1,

e−i 2π
λ pd sin θk , . . . , e−i

2π[M(N+1)−1]p
λ d sin θk ]T ,

B2 = [b2(θ1), b2(θ2), . . . , b2(θK)] ∈ CD×K with

b2(θk)=[e−i
2π [M(N+1)p+1]

λ d sin θk , e−i
2π [(M(N+1)+1)p+1]

λ d sin θk ,

. . . , e−i
2π [(3M(N+1)−2)p+1]

λ d sin θk ]T ,

and B3 = [b3(θ1), b3(θ2), . . . , b3(θK)] ∈ CD×K with

b3(θk) = [ei
2π [(3M(N+1)−2)p+1]

λ d sin θk ,
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. . . , ei
2π [(M(N+1)+1)p+1]

λ d sin θk , ei
2π [M(N+1)p+1]

λ d sin θk ]T .

As in [4], we define an F -order matrix P⊥
F = IF −

(1F 1TF )/F , where each component of 1F ∈ CF×1 is equal to 1.
Performing eigenvalue decomposition (EVD) ofYP⊥

F (YP⊥
F )

H ,
we can get the eigenvectors of theK maximum eigenvalues to
form the signal subspace Us ∈ C3D×K .

Remark: For nested array [7], when the signal subspace is
obtained by dealing with the corresponding non-redundancy
covariance matrix, all angles can be estimated by using this sig-
nal subspace. But for the proposed array, we cannot get unam-
biguous DOA estimation by using Us.

2.2. Subspace Repair and DOA Estimation
Firstly, we draw three sub-matrices from Us by U1 = Us (1 : D)

U2 = Us (D + 1 : 2D)
U3 = Us (2D + 1 : 3D)

. (9)

It is easy to know that we can find an invertible matrix T ∈
CK×K satisfying  U1 = B3T

U2 = B1T
U3 = B2T

. (10)

Define six matrices U11 ∈ C(D−1)×K , U12 ∈ C(D−1)×K ,
U21 ∈ C(D−1)×K , U22 ∈ C(D−1)×K , U31 ∈ C(D−1)×K and
U32 ∈ C(D−1)×K by

U11 = U1(1 : D − 1)
U12 = U1(2 : D)
U21 = U2(1 : D − 1)
U22 = U2(2 : D)
U31 = U3(1 : D − 1)
U32 = U3(2 : D)

. (11)

As [3], we can denote a matrixΨ1 ∈ CK×K as

Ψ1 =

 U11

U21

U31

+  U12

U22

U32

 , (12)

and it is easy to know

Ψ1 = T−1Λ1T, (13)

where Λ1 = diag{e−i 2πp
λ d sin θ1 , e−i 2πp

λ d sin θ2 , . . .,

e−i 2πp
λ d sin θK}.

Then, we can construct four matrices Ū1 ∈ CD×K , Ū2−1 ∈
CD×K , Ū2−2 ∈ CD×K and Ū3 ∈ CD×K by

Ū1 = U1Ψ
D
1

Ū2−1 = U2

(
Ψ−1

1

)D
Ū2−2 = U2 (Ψ1)

D

Ū3 = U3

(
Ψ−1

1

)D . (14)

Using the four matrices, we can construct a matrix Ψ2 ∈
CK×K as

Ψ2 =


U1

Ū1

U2

Ū2−2


+ 

Ū2−1

U2

Ū3

U3

 , (15)

and it is easy to know

Ψ2 = T−1Λ2T, (16)

whereΛ2 = diag{e−i 2πd
λ sin θ1 , e−i 2πd

λ sin θ2 , . . . , e−i 2πd
λ sin θK}.

We introduce p matrices Mv = ID ⊗ ev , v = 1, 2, . . . , p,
where ev ∈ Cp×1 is the vector with all elements set to zero
except the vth element equal to 1.
Get three matrices Ũ1 ∈ CpD×K , Ũ2 ∈ CpD×K , and Ũ3 ∈

CpD×K by 
Ũ1 =

p∑
v=1

MvU1Ψ
v−1
2

Ũ2 =
p∑

v=1
MvU2Ψ

v−2
2

Ũ3 =
p∑

v=1
MvU3Ψ

v−3
2

. (17)

Combining Ũ1, Ũ2 and Ũ3, we can obtain the repaired signal
subspace Ũ ∈ C3pD×K by

Ũ =

 Ũ1

Ũ2

Ũ3

 . (18)

Synthesizing (9), (16), and (17), it is easy to know

Ũ = CT, (19)

where C = [c(θ1), c(θ2), . . . , c(θK)] ∈ C3pD×K with

c(θk) = [ei
2π
λ [

(3D−1)p
2 +1]d sin θk , ei

2π
λ [

(3D−1)p
2 ]d sin θk ,

. . . , e−i 2π
λ [

(3D+1)p
2 −2]d sin θk ]T . (20)

Performing Schmidt orthogonalization of the columns of Ũ,
we can obtain Ũo ∈ C3pD×K . Similar to [1, 2, 11], we denote
a cost function as

f(θ) =
1

cH(θ)(I3pD − Ũo(Ũo)H)c(θ)
, (21)

where c(θ) = [ei
2π
λ [

(3D−1)p
2 +1]d sin θ, ei

2π
λ [

(3D−1)p
2 ]d sin θ, . . . ,

e−i 2π
λ [

(3D+1)p
2 −2]d sin θ]T . We can get the DOAs of all signals

by searching the spectral peaks of f(θ).

3. SIMULATION
In this section, we compare the performance of the proposed
separated generalized nested array with the nested array [7] in
DOA estimation. For the nested array [7], we suppose that
the signal subspace is also obtained by dealing with the non-
redundancy covariance matrix. The number of elements for the
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FIGURE 2. Comparison of spatial spectrums with mutual coupling being ignored.

FIGURE 3. Comparison of spatial spectrums with mutual coupling being considered.

two kinds of arrays is fixed at 10. Suppose that the separated
generalized nested arraywithM = 3,N = 2, and p = 3 is used
for the proposed algorithm. The directions of the three quasi-

stationary signals are 30◦, 35◦, and 40◦, respectively. The to-
tal number of frames is fixed at 50. The simulation conditions
include considering mutual coupling and ignoring mutual cou-
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FIGURE 4. RMSE versus SNR. FIGURE 5. RMSE versus snapshots.

pling. When the mutual coupling effect is considered, it is as-
sumed that themutual coupling only exists between two sensors
spaced no more than the half-wavelength of the incident sig-
nal. The mutual coupling coefficient between two sensors with
half-wavelength spacing is 0.4eπi/4. Root mean square error
(RMSE) is obtained through 500 independent repeated experi-
ments and defined as√√√√ 1

500K

500∑
w=1

K∑
k=1

(θ̂kw − θk)2, (22)

where θ̂kw is the estimation of θk in the wth experiment.
Figure 2 shows the comparative result of spectrum peak

search without considering the effect of mutual coupling, where
the signal-to-noise ratio (SNR) is 10 dB and L = 500. Accord-
ing to the result in the figure, we can find that the two methods
can resolve the three signals clearly in the case of ignoring mu-
tual coupling.
Figure 3 shows the comparative result of spectrum peak

search as mutual coupling is presented, where the SNR is 10 dB
and L = 500. According to the result in the figure, we can find
that the estimation performance of the nested array [7] has sig-
nificantly decreased when the mutual coupling is considered.
Figure 4 shows the RMSE comparison under different SNRs

with L = 500. Fig. 5 shows the RMSE comparison under dif-
ferent snapshots with SNR = 7.5 dB. The comparison results
can prove that the proposed method based on the proposed ar-
ray has better performance than the similar method based on the
nested array [7]. It is easy to find that the dimensions of the final
signal subspace obtained by the proposed array are higher than
that of signal subspace obtained by the nested array [7]. Hence,
the proposed method has higher estimation accuracy than the
similar method based on nested array [7].

4. CONCLUSION
In this paper, a separated generalized nested array is proposed.
Being different from the conventional nested array, this ar-
ray has adjustable element spacing, so the mutual coupling ef-
fect between sensors can be reduced effectively. By using this
sparse array, a DOA estimation algorithm for quasi-stationary
signal has been proposed and shows much higher estimation
accuracy than the similar method based on nested array.
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