Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-02-10
A Compact Coplanar Waveguide Spoof Surface Plasmon Polariton with Enhanced Field Confinements
By
Progress In Electromagnetics Research Letters, Vol. 117, 83-88, 2024
Abstract
In this article, a novel transmission line (TL) based on coplanar waveguide (CPW) spoof surface plasmon polariton (SSPP) with flipper structures is proposed to improve field confinement. An equivalent circuit (E.C) is developed to analyze the proposed SSPP. The E.C analyses reveals that the proposed unit exhibits flexibly controllable dispersion features and improved field confinements owing to the introduction of the flipper structures. Finally, the proposed SSPP TL is designed, fabricated, and tested to validate the design principles. The experiment results illustrate the theoretical analyses and validate that the proposed SSPP TL exhibits ultra-compact size occupation and enhanced field confinement.
Citation
Chao Pang, and Lin Li, "A Compact Coplanar Waveguide Spoof Surface Plasmon Polariton with Enhanced Field Confinements," Progress In Electromagnetics Research Letters, Vol. 117, 83-88, 2024.
doi:10.2528/PIERL23112601
References

1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, Aug. 2003.
doi:10.1038/nature01937

2. Gao, Xi and Tie Jun Cui, "Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications," Nanotechnology Reviews, Vol. 4, No. 3, 239-258, Jun. 2015.
doi:10.1515/ntrev-2014-0032

3. Zhang, Dawei, Kuang Zhang, Qun Wu, Ruiwei Dai, and Xuejun Sha, "Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency," Optics Letters, Vol. 43, No. 13, 3176-3179, Jul. 2018.
doi:10.1364/OL.43.003176

4. Guo, Ying-Jiang, Kai-Da Xu, Xianjin Deng, Xu Cheng, and Qiang Chen, "Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritons," IEEE Electron Device Letters, Vol. 41, No. 8, 1165-1168, Aug. 2020.

5. Xu, Hao, Wen-Sheng Zhao, Da-Wei Wang, and Jun Liu, "Compact folded SSPP transmission line and its applications in low-pass filters," IEEE Photonics Technology Letters, Vol. 34, No. 11, 591-594, Jun. 2022.
doi:10.1109/LPT.2022.3173657

6. Xu, Jia, Zhuo Li, Liangliang Liu, Chen Chen, Bingzheng Xu, Pingping Ning, and Changqing Gu, "Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons," Optics Communications, Vol. 372, 155-159, Aug. 2016.
doi:10.1016/j.optcom.2016.04.017

7. He, Pei Hang, Hao Chi Zhang, Xinxin Gao, Ling Yun Niu, Wen Xuan Tang, Jiayuan Lu, Le Peng Zhang, and Tie Jun Cui, "A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements," Opto-Electronic Advances, Vol. 2, No. 6, 190001, 2019.
doi:10.29026/oea.2019.190001

8. Shi, Zihao, Yizhu Shen, and Sanming Hu, "Spoof surface plasmon polariton transmission line with reduced line-width and enhanced field confinement," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 8, e22276, Aug. 2020.
doi:10.1002/mmce.22276

9. Tang, Xiao-Lan, Qingfeng Zhang, Sanming Hu, Abhishek Kandwal, Tongfeng Guo, and Yifan Chen, "Capacitor-loaded spoof surface plasmon for flexible dispersion control and high-selectivity filtering," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 9, 806-808, Sep. 2017.
doi:10.1109/LMWC.2017.2734738

10. He, Pei Hang, Dayue Yao, Hao Chi Zhang, Jiangpeng Wang, Di Bao, and Tie Jun Cui, "Ultra-compact on-chip spoof surface plasmon polariton transmission lines with enhanced field confinements," Journal of Physics: Photonics, Vol. 4, No. 4, Oct. 2022.
doi:10.1088/2515-7647/ac9874

11. Pan, Hao, Bing-xiang Li, and Hai Feng Zhang, "Anapole-excited terahertz multifunctional spoof surface plasmon polariton directional janus metastructures," Physical Chemistry Chemical Physics, Vol. 25, No. 16, 11375-11386, Apr. 2023.
doi:10.1039/d3cp00341h

12. Guo, Zi-Han, Cheng-Jing Gao, and Hai-Feng Zhang, "Direction-dependent janus metasurface supported by waveguide structure with spoof surface plasmon polariton modes," Advanced Materials Technologies, Vol. 8, No. 2, 2200435, Jan. 2023.
doi:10.1002/admt.202200435

13. Li, Qian-Qian and Hai-Feng Zhang, "A high gain circularly polarized 2 × 2 antenna array based on the spoof surface plasmon polariton and spoof localized surface plasmon," Journal of Electromagnetic Waves and Applications, Vol. 37, No. 15, 1298-1316, Oct. 2023.
doi:10.1080/09205071.2023.2234381

14. Li, Jianxing, Junwei Shi, Kai-Da Xu, Ying-Jiang Guo, Anxue Zhang, and Qiang Chen, "Spoof surface plasmon polaritons developed from coplanar waveguides in microwave frequencies," IEEE Photonics Technology Letters, Vol. 32, No. 22, 1431-1434, Nov. 2020.
doi:10.1109/LPT.2020.3031065

15. Pang, Chao, Rui-Feng Cao, Lin Li, and Hai-Wen Liu, "Spoof surface plasmon polariton based on stepped grooves and its application in compact low-pass filter design," Plasmonics, 2023.
doi:10.1007/s11468-023-02078-3

16. Ma, Aning, Yuee Li, and Xiaoping Zhang, "Coupled mode theory for surface plasmon polariton waveguides," Plasmonics, Vol. 8, No. 2, 769-777, Jun. 2013.
doi:10.1007/s11468-012-9471-0