Vol. 118
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-03-14
The Positive-Definite Stability Analysis for Marching-on-in-Time Schemes
By
Progress In Electromagnetics Research Letters, Vol. 118, 71-78, 2024
Abstract
The positive-definite stability analysis (PDSA) is presented as a technique complementary to the companion-matrix stability analysis (CMSA). The PDSA is used to analyze the stability of marching-on-in-time (MOT) schemes. The heart of the PDSA is formed by the analysis on particular linear combinations of interaction matrices from an MOT scheme, which are assumed to be real-valued. If these are all positive definite, then the PDSA guarantees the stability of the scheme. The PDSA can be of a lower complexity than the full CMSA. The construction of the PDSA is shown and applied to two numerical examples.
Citation
Petrus Wilhelmus Nicolaas (Pieter) Van Diepen, Martijn Constant van Beurden, and Roeland Johannes Dilz, "The Positive-Definite Stability Analysis for Marching-on-in-Time Schemes," Progress In Electromagnetics Research Letters, Vol. 118, 71-78, 2024.
doi:10.2528/PIERL23112406
References

1. Poggio, Andrew J. and Edmund K. Miller, Integral Equation Solutions of Three-dimensional Scattering Problems, 1st Ed., 159-264, Pergamon Press, Oxford, 1973.

2. Dodson, S. J., "Implicitness and stability of time domain integral equation scattering analyses," The Applied Computational Electromagnetics Society Journal (ACES), 291-301, 1998.

3. Van't Wout, Elwin, Duncan R. van der Heul, Harmen van der Ven, and Cornelis Vuik, "The influence of the exact evaluation of radiation fields in finite precision arithmetic on the stability of the time domain integral equation method," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6064-6074, Dec. 2013.
doi:10.1109/TAP.2013.2281365

4. Van't Wout, Elwin, Duncan R. van der Heul, Harmen van der Ven, and Cornelis Vuik, "Stability analysis of the marching-on-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, Mar. 2016.
doi:10.1016/j.cam.2015.09.002

5. Van Diepen, Petrus W. N., Roeland J. Dilz, Adrianus P. M. Zwamborn, and Martijn C. van Beurden, "The role of jordan blocks in the MOT-scheme time domain EFIE linear-in-time solution instability," Progress In Electromagnetics Research B, Vol. 95, 123-140, 2022.

6. Van Diepen, Petrus W. N., Roeland J. Dilz, and Martijn C. van Beurden, "Jordan block eigenvalue shift in the marching-on-in-time electric field integral equation," 2023 17th European Conference on Antennas and Propagation (EuCAP), 1-5, Florence, Italy, Mar. 2023.

7. Bin Sayed, Sadeed, Hüseyin Arda Ülkü, and Hakan Bağci, "A stable marching on-in-time scheme for solving the time-domain electric field volume integral equation on high-contrast scatterers," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3098-3110, Jul. 2015.
doi:10.1109/TAP.2015.2429736

8. Van Diepen, Petrus Wilhelmus Nicolaas (Pieter), Martijn Constant van Beurden, and Roeland Johannes Dilz, "The influence of contrast and temporal expansion on the marching-on-in-time contrast current density volume integral equation," Progress In Electromagnetics Research B, Vol. 104, 21-33, 2024.
doi:10.2528/PIERB23091305

9. Pan, Victor Y. and Zhao Q. Chen, "The complexity of the matrix eigenproblem," Proceedings of the Thirty-First Annual ACM symposium on Theory of computing, 507-516, 1999.

10. Horn, Roger A. and Charles R. Johnson, Matrix Analysis, 2nd Ed., Cambridge University Press, New York, 2012.

11. Wang, Xiaoshen, "A simple proof of descartes's rule of signs," The American Mathematical Monthly, Vol. 111, No. 6, 525-526, 2004.