Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-21
A Generalized Solution for h -Polarized Scattering from Shallow Cavities with an Arbitrary Profile
By
Progress In Electromagnetics Research Letters, Vol. 117, 9-12, 2024
Abstract
In this paper, a generalized manner is developed for the problem of the scattering of H-polarized electromagnetic waves from a shallow cavity with an arbitrary profile. Considering a proper auxiliary border and employing the region-matching technique, some close-form expressions are derived to compute the fields inside and outside the cavity. Next, we apply this approach to two cavities with different shapes and verify it by the Method of Moments (MoM).
Citation
Mehdi Bozorgi, "A Generalized Solution for h -Polarized Scattering from Shallow Cavities with an Arbitrary Profile," Progress In Electromagnetics Research Letters, Vol. 117, 9-12, 2024.
doi:10.2528/PIERL23111205
References

1. Harrington, R. F. and J. R. Mautz, "A generalized network formulation for aperture problems," IEEE Transactions on Antennas and Propagation, Vol. 24, No. 6, 870-873, Nov. 1976.

2. Jeng, Shyh-Kang, "Scattering from a cavity-backed slit in a ground plane - TE case," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1523-1529, Oct. 1990.

3. Barkeshli, Kasra and John L. Volakis, "Scattering from narrow rectangular filled grooves," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 6, 804-810, Jun. 1991.

4. Hinders, M. K. and A. D. Yaghjian, "Dual-series solution to scattering from a semicircular channel in a ground plane," IEEE Microwave and Guided Wave Letters, Vol. 1, No. 9, 239-242, Sept. 1991.

5. Kempel, Leo C. and T. B. A. Senior, "Scattering by a small cavity-backed hole," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1115-1121, Aug. 1993.

6. Amari, Smain and Jens Bornemann, "Efficient numerical computation of singular integrals with applications to electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 11, 1343-1348, Nov. 1995.

7. Bindiganavale, Sunil S. and John L. Volakis, "A hybrid FE-FMM technique for electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 180-181, Dec. 1997.

8. Morgan, Michael A. and F. K. Schwering, "Mode expansion solution for scattering by a material filled rectangular groove," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 4, 467-468, 1998.
doi:10.1163/156939398X00890

9. Byun, W. J., Jong-Won Yu, and Noh-Hoon Myung, "TM scattering from hollow and dielectric-filled semielliptic channels with arbitrary eccentricity in a perfectly conducting plane," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 9, 1336-1339, Sept. 1998.

10. Shifman, Yair and Yehuda Leviatan, "Scattering by a groove in a conducting plane-a PO-MoM hybrid formulation and wavelet analysis," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 12, 1807-1811, Dec. 2001.

11. Van, T. and A. W. Wood, "Finite element analysis of electromagnetic scattering from a cavity," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 1, 130-137, Jan. 2003.
doi:10.1109/TAP.2003.808517

12. Basha, Mohamed A., Sujeet K. Chaudhuri, and S. Safavi-Naeini, "A Fourier expansion solution to plane wave scattering from multiple isosceles right triangle grooves in perfect conducting plane," Photonic Applications in Devices and Communication Systems, Vol. 5970, 249-258, Oct. 2005.

13. Tsaur, Deng-How and Kao-Hao Chang, "Tm scattering from a dielectric biconvex cylinder loading a shallow circular gap in a perfectly conducting plane," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2928-2931, Oct. 2007.

14. Alavikia, Babak and Omar M. Ramahi, "Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint," Journal of the Optical Society of America A, Vol. 26, No. 9, 1915-1925, Sept. 2009.

15. Pérez-Arancibia, C. and O. P. Bruno, "High-order integral equation methods for problems of scattering by bumps and cavities on half-planes," Journal of the Optical Society of America A, Vol. 31, 1738-1746, 2014.
doi:10.1364/JOSAA.31.001738

16. Bozorgi, Mehdi, "A mode-matching solution for TE-backscattering from an arbitrary 2-D rectangular groove in a PEC," Journal of Electromagnetic Engineering and Science, Vol. 20, No. 3, 159-163, 2020.
doi:10.26866/jees.2020.20.3.159

17. Kadlec, Petr, "Time-domain electromagnetic identification based on rectangular grooves," IEEE Access, Vol. 10, 100104-100112, 2022.

18. Xiao, Guang-Liang, Kun-Yi Guo, and Xin-Qing Sheng, "Parametric scattering center modeling for a conducting deep cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1419-1423, Aug. 2021.

19. Bozorgi, Mehdi, "Scattering of electromagnetic waves induced by an shallow triangular cavity," IET Microwaves, Antennas & Propagation, Vol. 17, No. 6, 494-503, 2023.

20. Bozorgi, Mehdi and Saeed Reza Ostadzadeh, "TM scattering by a shallow elliptical-shaped cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1802-1806, Sept. 2022.

21. Zhang, Xu, Feng Xu, Dapeng Pei, Feng Wang, and Ya-Qiu Jin, "Bidirectional scattering distribution function of electrically large distributed rectangular slots," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3520-3535, Jan. 2023.