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ABSTRACT: In this paper, a generalized manner is developed for the problem of the scattering of H-polarized electromagnetic waves
from a shallow cavity with an arbitrary profile. Considering a proper auxiliary border and employing the region-matching technique,
some close-form expressions are derived to compute the fields inside and outside the cavity. Next, we apply this approach to two cavities
with different shapes and verify it by the Method of Moments (MoM).

1. INTRODUCTION

Because of the complexity of scattering wave from cavi-
ties, apertures, and discontinuities, many researchers are

working on various methods to solve the problem of scatter-
ing in such structures [1–21]. There are numerous numerical
methods presented to compute scattered waves from open cav-
ities with arbitrary shapes [6, 7, 10, 11, 14]. However, the ana-
lytic and semi-analytic solutions are still valuable due to their
high computational efficiency and also help us to understand-
ing the wave propagation and scattering characteristics, physi-
cally [1–5, 8, 9, 12, 13, 15–21]. The present method is a semi-
analytic treatment that uses wavefunction expansion and region
matching techniques to provide a closed-form of solution for
a shallow cavity with a specified and continuous profile in a
Perfect Electric Conductor (PEC) plane. Some studies have
been done on shallow circular, elliptical, and triangular cavi-
ties [13, 19, 20]. However, this study focuses on a more gen-
eral manner to apply more practical and different problems and
cavities. Here, to expand the electromagnetic fields by proper
wave functions, an auxiliary border is considered, and thus the
analyzed area is divided into two subregions. Then the tangen-
tial fields for two subregions are expressed in terms of an infi-
nite series of proper wave functions. To compute the unknown
series coefficients, the continuity of the boundary conditions
is applied on the cavity wall and auxiliary border to construct
a system of linear equations. Finally, the proposed manner is
successfully applied to two different open cavities.

2. FORMULATION
The 2-D model treated in this research is shown in Fig. 1. This
figure represents a shallow cavity created by a PEC wall with a
known profile l : y = f(x). The excitation of the model is the
magnetic fieldHi

z (H-polarized cylindric a plane wave) and its
reflected field Hr

z as

Hi
z = eik0r cos(φ−φi)
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and Hr
z = eik0r cos(φ+φi) φi ∈ (0, π) (1)

where k0 and φi are the free space propagation constant and in-
cident angle. The semi-circular auxiliary borderΩ1 with radius
a is considered to divide the analyzed region into two subre-
gions (Region 1 and Region 2). This auxiliary interface that
the cavity is placed inside allows us to employ a proper cylin-
drical wavefunction to expand the fields inside Region 2 that
satisfy the Helmholtz equation and boundary condition at the
cavity wall, simultaneously.

FIGURE 1. Geometry of a shallow open cavity with an arbitrary profile.

Here, we use a classification criterion for the term “shallow
cavity” as the cavity walls should be inside the auxiliary bor-
der Ω2. The scattered fieldHs

z and the total magnetic fieldH1
z

in Region 1 (which is the sum of Hi
z and Hr

z ) and the total
magnetic field H2

z in Region 2 expressed in the cylindrical co-
ordinate system (r, φ) can be written as

Hs
z =

∑+∞

m=0
AmH(2)

m (k0r) cos (mφ) (2)

H1
z = Hi

z +Hr
z +Hs

z =
∑+∞

m=0

[
4imJm (k0r) cos

(
mφi

)
+AmH(2)

m (k0r)
]
cos (mφ) (3)

H2
z =

∑+∞

m=0
[Bm sin (mφ) + Cm cos (mφ)] Jm (k0r) (4)
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FIGURE 2. The results for a cavity with l : y = x2 − 0.2. (a) |Hz| at y = 0 for the incidence angle φi = 90◦. (b) The echowidth as the function of
the incidence angle φi.

where Jm (·) andH(2)
m (·) are themth order Bessel function of

the first kind and the Hankel function of the second kind, re-
spectively. The complex expansion coefficients Am, Bm and
Cm are to be determined. The boundary conditions on the aux-
iliary border Ω1 and the cavity surface l are

H1
z = H2

z on Ω1,
∂H1

z

∂n1
=

∂H2
z

∂n1
on Ω1

and
∂H2

z

∂n2
= 0 on l (5)

Matching boundary conditions across the auxiliary interface
Ω1, multiplying the matching conditions by cosine functions
and integrating over the range [0, π] yields the following two
independent linear algebraic equations,

Cn +AnQn/Pn +
∑+∞

m = 1
m+ n = odd

Bm
Pm

Pn

2mδn
π(m2 − n2)

= 2δni
n sin

(
nφi

)
(6)

wherePn andQn for the first independent equation are Jn(k0a)
andH(2)

n (k0a), respectively, and for the second equation, these
parameters are J ′

n(k0a) and H
′(2)
n (k0a), respectively. In addi-

tion, the transfer magnetic field H2
z inside the cavity should

satisfy Neumann boundary condition ∂H2
z/∂n2 = 0 where n⃗2

is the normal vector to the curve l. In a similar fashion, by mul-
tiplying the boundary condition on the cavity wall by cosine
function and integrating over the range [π, 2π], we have∫ 2π

π

∂H2
z

∂n2
cos (nφ) dφ

=

∫ 2π

π

∇H2
z · n⃗2 cos (nφ) dφ = 0 (7)

To construct the third independent equation for Bm and Cm

from integral (7), we attempt to obtain expressions for two
terms ∇H2

z and n⃗2 in terms of r and φ, analytically. Thus,
we have

∇H2
z =

(
∂H2

z

∂r
r⃗ +

1

r

∂H2
z

∂φ
φ⃗

)
=

∑+∞

m=0
k0[Bm sin (mφ)

+Cm cos (mφ)]J ′
m (k0r) r⃗ +

∑+∞

m=0
[mBm cos (mφ)

−mCm sin (mφ)]
Jm (k0r)

r
φ⃗ (8)

To derive the vector n⃗2 that is normal to the cavity wall, we
assume that the curve l is also defined by a polar equation r =
g(φ)which expresses the dependence of the length of the radius
r on the polar angle φ. We have x = r cos(φ) = g(φ) cos(φ)
and y = r sin(φ) = g(φ) sin(φ). Consequently, the slope of

the normal line to the cavity wall is ∂x
∂φ

/
∂y
∂φ , and thus the nor-

mal vector n⃗2 is given by

n⃗2 =

(
∂g (φ)

∂φ
cos(φ)− g (φ) sin (φ) ,

∂g (φ)

∂φ
sin(φ) + g (φ) cos (φ)

)
(9)

Now, by substituting (8) and (9) into (7), we can obtain the inte-
gral in (7) numerically to determine the coefficient of third lin-
ear equation constructed for Bm and Cm. The series in (2)–(4)
can be truncated atm = M . The linear algebraic equations (6)
to (7) make a system of linear equations and can be solved by
the matrix methods for the coefficients Am, Bm, and Cm.

3. RESULTS
To verify the solution, we apply the proposedmethod to two dif-
ferent cases and compare the results by theMoM used in FEKO
software. First, we considered a cavity with l : y = x2 − 0.2
and incidence angle φi = 90◦. Fig. 2(a) illustrates the ampli-
tude of Hz on the cavity opening versus the aperture position
x. Also, comparisons of the echo width versus the incidence
angle with MoM are given in Fig. 2(b). As demonstrated in
Fig. 2, the results obtained from this method are in good agree-
ment with those generated by MoM. To examine the efficiency
of this method, we measured the simulation time for the cav-
ity introduced in the first example. This time for this man-
ner MoM is 9.12 sec. and 25min., respectively, which demon-
strates that this method is efficient. However, as the size of
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FIGURE 3. The distribution of |Hz| around the cavity with l : y = x2 − 0.2 at φi = 90◦.

(a) (b)

FIGURE 4. The results for a cavity with l : y =
3
√
0.1x2−0.5 (Neile’s parabola). (a) The amplitude ofHz at y = 0 for φi = 90◦. (b) The echowidth

as the function of the incidence angle φi.

FIGURE 5. The distribution of |Hz| around the cavity (near field) described at the caption of Fig. 4.

cavity increases, the truncation numberM should also increase,
and consequently, computation time increases. A rule of thumb
that we can use to find the value of the truncation numberM is
that it should be greater than k0W .
To show the capability of this method in near field analysis,

we also computed the |Hz| in the neighborhood of the cavity
described in the caption of Fig. 2 and displayed the results in
Fig. 3. The turbulence in the magnetic field around the cavity
causes the scattering of waves in the far zone. Next, we changed
the cavity shape to a semi-cubical parabola (Neile’s parabola)
with l : y =

3
√
0.1x2 − 0.5. Fig. 4 shows the amplitude of Hz

and the echowidths obtained by this method and MoM for the
semi-cubical cavity at φi = 90◦. Similar to the first example,
we also presented the distribution of |Hz| around this cavity in
Fig. 5.

4. CONCLUSION
An efficient method forH-polarized wave scattering by a shal-
low cavity with an arbitrary shape was developed. The tech-
nique of wavefunction expansions and region matching method
are used to solve this problem. We examine its validity and
computational efficiency by comparing with the MoM and
show its applicability for the determination of fields at far and
near zones.
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