Vol. 126
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-04-09
Accurate on Wafer Calibration and S-Parameter Measurement Setup for InP -Based HEMT Devices to 220 GHz
By
Progress In Electromagnetics Research M, Vol. 126, 99-106, 2024
Abstract
In this paper, the on-wafer S-parameter measurement of InP-Based HEMT devices up to 220\,GHz is presented. The calibration kits utilizing a CPWG structure are meticulously designed on an InP substrate. The corresponding structure for calibrating the reflection mechanism is designed in order to reduce the influence between the two ports during the calibration process and improve isolation. The TSVs process is employed to attain broadband load. The design concept of the calibration structure is discussed, and the simulation results up to 220\,GHz are provided for demonstration. The measurement results encompass frequency ranges of 0.2-66 GHz, 75-110 GHz, 110-170 GHz, and 170-220 GHz. Moreover, the test results obtained from different calibration methods for InP HEMT devices are compared and analyzed. By employing interpolation techniques, comprehensive S-parameter data for actual DUTs ranging from 0.2 to 220 GHz is successfully obtained. Furthermore, the intrinsic parameters Cgs is extracted from device test results, and various calibration methods are utilized for comparison. The extrapolated maximum current gain cut-off frequency fT based on a -20 dB/decade slope in H21 is determined as 252 GHz while the extrapolated device maximum oscillation frequency fmax calculated through the maximum stable gain (MSG)/the maximum available gain (MAG) and Umason approaches reaches up to 435 GHz.
Citation
Haiyan Lu, Jixin Chen, Zhongfei Chen, Yuan Sun, Luwei Qi, Siyuan Tang, Hongqi Tao, Tangsheng Chen, and Wei Hong, "Accurate on Wafer Calibration and S-Parameter Measurement Setup for InP -Based HEMT Devices to 220 GHz ," Progress In Electromagnetics Research M, Vol. 126, 99-106, 2024.
doi:10.2528/PIERM23110503
References

1. Fujishima, Minoru, Mizuki Motoyoshi, Kosuke Katayama, Kyoya Takano, Naoko Ono, and Ryuichi Fujimoto, "98 mW 10 Gbps wireless transceiver chipset with D-band CMOS circuits," IEEE Journal of Solid-state Circuits, Vol. 48, No. 10, 2273-2284, 2013.

2. Cho, Hanjin and Dorothea E. Burk, "A three-step method for the de-embedding of high-frequency S-parameter measurements," IEEE Transactions on Electron Devices, Vol. 38, No. 6, 1371-1375, 1991.

3. Koolen, M. C. A. M., J. A. M. Geelen, and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization," Proc. Bipolar Circuits Technol. Meeting, 188-191, 1991.

4. Vandamme, Ewout P., D. M. M.-P. Schreurs, and G. Van Dinther, "Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test-structures," IEEE Transactions on Electron Devices, Vol. 48, No. 4, 737-742, 2001.

5. Lobisser, Evan, Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths, University of California, Santa Barbara, 2011.

6. Lautzenhiser, Stephen, Andrew Davidson, and Keith Jones, "Improve accuracy of on-wafer tests via LRM calibration," Microwaves & RF, Vol. 29, No. 1, 105-109, 1990.

7. Rumiantsev, Andrej, Susan L. Sweeney, and Phillip L. Corson, "Comparison of on-wafer multiline TRL and LRM+ calibrations for RF CMOS applications," 2008 72nd ARFTG Microwave Measurement Symposium, 132-136, IEEE, 2008.

8. DeGroot, Donald C., Jeffrey A. Jargon, and Roger B. Marks, "Multiline TRL revealed," 60th ARFTG Conference Digest, Fall 2002., 131-155, IEEE, 2002.

9. Fregonese, Sebastien, Marina Deng, Magali De Matos, Chandan Yadav, Simon Joly, Bernard Plano, Christian Raya, Bertrand Ardouin, and Thomas Zimmer, "Comparison of on-wafer TRL calibration to ISS SOLT calibration with open-short de-embedding up to 500 GHz," IEEE Transactions on Terahertz Science and Technology, Vol. 9, No. 1, 89-97, 2019.

10. Fregonese, Sebastien, Magali De Matos, Marina Deng, Manuel Potereau, Cédric Ayela, Klaus Aufinger, and Thomas Zimmer, "On-wafer characterization of silicon transistors up to 500 GHz and analysis of measurement discontinuities between the frequency bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3332-3341, 2018.
doi:10.1109/TMTT.2018.2832067

11. Cleriti, R., W. Ciccognani, S. Colangeli, E. Limiti, P. Frijlink, and M. Renvoise, "Characterization and modelling of 40 nm mHEMT process up to 110 GHz," 2016 11th European Microwave Integrated Circuits Conference (EuMIC), 353-356, IEEE, 2016.

12. Lopez-Gonzalez, F. J., E. Marquez-Segura, P. Otero, and C. Camacho-Penalosa, "Robust statistical multi-line TRL calibration approach for microwave device characterization," MELECON 2006 --- 2006 IEEE Mediterranean Electrotechnical Conference, 187-190, IEEE, 2006.

13. Marks, Roger B., "A multiline method of network analyzer calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 7, 1205-1215, 1991.

14. Yadav, Chandan, Marina Deng, Sebastien Fregonese, Marco Cabbia, Magali De Matos, and Thomas Zimmer, "Investigation of variation in on-Si on-wafer TRL calibration in sub-THz," IEEE Transactions on Semiconductor Manufacturing, Vol. 34, No. 2, 145-152, 2021.

15. Cabbia, Marco, Chandan Yadav, Marina Deng, Sebastien Fregonese, Magali De Matos, and Thomas Zimmer, "Silicon test structures design for sub-THz and THz measurements," IEEE Transactions on Electron Devices, Vol. 67, No. 12, 5639-5645, 2020.

16. Galatro, Luca, Andreas Pawlak, Michael Schroter, and Marco Spirito, "Capacitively loaded inverted CPWs for distributed TRL-based de-embedding at (sub) mm-waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 4914-4924, 2017.

17. Lu, Haiyan, Wei Cheng, Oupeng Li, Yuechan Kong, and Tangsheng Chen, "Measurement and modeling techniques for InP-based HBT devices to 220GHz," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, IEEE, 2018.

18. DeGroot, Donald C., Jeffrey A. Jargon, and Roger B. Marks, "Multiline TRL revealed," 60th ARFTG Conference Digest, Fall 2002., 131-155, IEEE, 2002.

19. Lobisser, Evan, Scaling Mesa Indium Phosphide Dhbts to Record Bandwidths, University of California, Santa Barbara, 2011.

20. Deal, W. R., Kevin Leong, Alex Zamora, Wayne Yoshida, Mike Lange, Ben Gorospe, Khanh Nguyen, and Gerry X. B. Mei, "A low-power 670-GHz InP HEMT receiver," IEEE Transactions on Terahertz Science and Technology, Vol. 6, No. 6, 862-864, 2016.

21. Leong, Chee Cheong Joseph, Zhongxiang Shen, and Lai Choon Tay, "Small-signal modeling of a PHEMT up to 110 GHz based on the genetic algorithm," Microwave and Optical Technology Letters, Vol. 29, No. 6, 367-373, 2001.

22. Niu, Bin, Yuan Wang, Wei Cheng, Zi-Li Xie, Hai-Yan Lu, Yan Sun, Jun-Ling Xie, and Tang-Sheng Chen, "Fabrication and small signal modeling of 0.5 μm InGaAs/InP DHBT demonstrating FT/Fmax of 350/532 GHz," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2774-2778, 2015.

23. Yau, Kenneth, Eric Dacquay, Ioannis Sarkas, and Sorin P. Voinigescu, "Device and IC characterization above 100 GHz," IEEE Microwave Magazine, Vol. 13, No. 1, 30-54, 2012.

24. Williams, Dylan F., Phillip Corson, Jahnavi Sharma, Harish Krishnaswamy, Wei Tai, Zacharias George, David S. Ricketts, Paul M. Watson, Eric Dacquay, and Sorin P. Voinigescu, "Calibrations for millimeter-wave silicon transistor characterization," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 3, 658-668, 2014.