Vol. 116
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-30
Novel Sparse Linear Array Based on a New Suboptimal Number Sequence with a Hole-Free Difference Co-Array
By
Progress In Electromagnetics Research Letters, Vol. 116, 23-30, 2024
Abstract
In this paper, we propose a new sparse linear array (SLA) that enjoys a hole-free difference co-array (DCA) and closed-form expressions for its sensor positions. The proposed configuration is valid for arrays containing seven or more sensors (N≥7). Exact expressions for the array aperture and achievable degrees of freedom (DOFs) have been derived. Numerical simulations were performed using MATLAB to reinforce the theoretical understanding. The main aim of this study is not to claim superiority over any existing SLA design, but to report that we have found a new number sequence that can act as an SLA. Except for being highly susceptible to mutual coupling, the proposed array has all the desirable features of a good SLA. We observed that the proposed array is on par with other SLAs for N<20. However, for 20 or more sensors, the array aperture does not scale rapidly in proportion to the added sensors and fails to match the resolution and/or DOFs offered by other sparse arrays. Nevertheless, the proposed sparse array is based on a unique and previously unknown number sequence.
Citation
Ashish Patwari, and Pradyumna Kunchala, "Novel Sparse Linear Array Based on a New Suboptimal Number Sequence with a Hole-Free Difference Co-Array," Progress In Electromagnetics Research Letters, Vol. 116, 23-30, 2024.
doi:10.2528/PIERL23102706
References

1. Monzingo, Robert A., Randy L. Haupt, and Thomas W. Miller, Introduction to Adaptive Arrays, 2nd Ed., Institution of Engineering and Technology, 2011.
doi:10.1049/SBEW046E

2. Van Trees, Harry L., Detection, Estimation, and Modulation Theory, Optimum Array Processing, John Wiley & Sons, 2004.

3. Liu, Chun-Lin and P. P. Vaidyanathan, "Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors," Digital Signal Processing, Vol. 61, 43-61, Feb. 2017.
doi:10.1016/j.dsp.2016.04.011

4. Moffet, A. T., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, Mar. 1968.
doi:10.1109/TAP.1968.1139138

5. Meyer, Christophe and Periklis A. Papakonstantinou, "On the complexity of constructing Golomb rulers," Discrete Applied Mathematics, Vol. 157, No. 4, 738-748, Feb. 2009.
doi:10.1016/j.dam.2008.07.006

6. Vaidyanathan, Palghat P. and Piya Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, Feb. 2010.

7. Pal, Piya and Palghat P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, Aug. 2010.

8. Liu, Chun-Lin and P. P. Vaidyanathan, "Super nested arrays: Linear sparse arrays with reduced mutual coupling - Part I: Fundamentals," IEEE Transactions on Signal Processing, Vol. 64, No. 15, 3997-4012, Aug. 2016.

9. Liu, Jianyan, Yanmei Zhang, Yilong Lu, Shiwei Ren, and Shan Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Transactions on Signal Processing, Vol. 65, No. 21, 5549-5563, Nov. 2017.
doi:10.1109/TSP.2017.2736493

10. Yang, Minglei, Lei Sun, Xin Yuan, and Baixiao Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electronics Letters, Vol. 52, No. 25, 2068-2070, Dec. 2016.
doi:10.1049/el.2016.3197

11. Patwari, Ashish, "Sparse linear antenna arrays: A review," Antenna Systems, IntechOpen, 2021.

12. Zheng, Zhi, Wen-Qin Wang, Yangyang Kong, and Yimin D. Zhang, "MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect," IEEE Transactions on Signal Processing, Vol. 67, No. 7, 1728-1741, Apr. 2019.
doi:10.1109/TSP.2019.2897954

13. Shi, Wanlu, Sergiy A. Vorobyov, and Yingsong Li, "ULA fitting for sparse array design," IEEE Transactions on Signal Processing, Vol. 69, 6431-6447, 2021.
doi:10.1109/TSP.2021.3125609

14. Peng, Zhe, Yingtao Ding, Shiwei Ren, Haixia Wu, and Weijiang Wang, "Coprime nested arrays for DOA estimation: Exploiting the nesting property of coprime array," IEEE Signal Processing Letters, Vol. 29, 444-448, 2022.
doi:10.1109/LSP.2021.3139577

15. Wandale, Steven and Koichi Ichige, "Flexible extended nested arrays for DOA estimation: Degrees of freedom perspective," Signal Processing, Vol. 201, 108710, Dec. 2022.
doi:10.1016/j.sigpro.2022.108710

16. Wandale, Steven and Koichi Ichige, "A generalized extended nested array design via maximum inter-element spacing criterion," IEEE Signal Processing Letters, Vol. 30, 31-35, 2023.
doi:10.1109/LSP.2023.3238912

17. Ren, Shiwei, Wentao Dong, Xiangnan Li, Weijiang Wang, and Xiaoran Li, "Extended nested arrays for consecutive virtual aperture enhancement," IEEE Signal Processing Letters, Vol. 27, 575-579, 2020.
doi:10.1109/LSP.2020.2983611

18. Shi, Wanlu, Yingsong Li, and Rodrigo C. de Lamare, "Novel sparse array design based on the maximum inter-element spacing criterion," IEEE Signal Processing Letters, Vol. 29, 1754-1758, 2022.
doi:10.1109/LSP.2022.3194814

19. Wandale, Steven and Koichi Ichige, "xMISC: Improved sparse linear array via maximum inter-element spacing concept," IEEE Signal Processing Letters, Vol. 30, 1327-1331, 2023.
doi:10.1109/LSP.2023.3316018

20. Patwari, Ashish and G. Ramachandra Reddy, "A conceptual framework for the use of minimum redundancy linear arrays and flexible arrays in future smartphones," International Journal of Antennas and Propagation, Vol. 2018, No. 9629837, 12, 2018.
doi:10.1155/2018/9629837

21. Lema, Gebrehiwet Gebrekrstos, Dawit Hadush Hailu, and Tekle Brhane Wuneh, "SLL attenuation-based thinned antenna design for next-generation communications," EURASIP Journal on Wireless Communications and Networking, Vol. 2019, No. 1, 225, Sep. 2019.
doi:10.1186/s13638-019-1547-5

22. Buttazzoni, Giulia, Fulvio Babich, Francesca Vatta, and Massimiliano Comisso, "Geometrical synthesis of sparse antenna arrays using compressive sensing for 5G IoT applications," Sensors, Vol. 20, No. 2, Jan. 2020.
doi:10.3390/s20020350

23. Hasan, Mohammed Zaki and Hussain Al-Rizzo, "Beamforming optimization in internet of things applications using robust swarm algorithm in conjunction with connectable and collaborative sensors," Sensors, Vol. 20, No. 7, Jan. 2020.
doi:10.3390/s20072048

24. Sodré, A. C., Igor Feliciano da Costa, Renan Alves dos Santos, Hugo Rodrigues Dias Filgueiras, and Danilo Henrique Spadoti, "Waveguide-based antenna arrays for 5G networks," International Journal of Antennas and Propagation, Vol. 2018, May 2018.
doi:10.1155/2018/5472045

25. Chaturvedi, Divya, Arvind Kumar, and Ayman A. Althuwayb, "A dual-band dual-polarized SIW cavity-backed antenna-duplexer for off-body communication," Alexandria Engineering Journal, Vol. 64, 419-426, Feb. 2023.
doi:10.1016/j.aej.2022.09.021

26. Chaturvedi, Divya and Arvind Kumar, "A QMSIW cavity-backed self-diplexing antenna with tunable resonant frequency using CSRR slot," IEEE Antennas and Wireless Propagation Letters, 1-5, 2023.

27. Chaturvedi, Divya, Arvind Kumar, Ayman A. Althuwayb, and Farnaz Ahmadfard, "SIW-backed multiplexing slot antenna for multiple wireless system integration," Electronics Letters, Vol. 59, No. 11, e12826, Jun. 2023.
doi:10.1049/ell2.12826

28. Wandale, Steven and Koichi Ichige, "A generalized extended nested array design via maximum inter-element spacing criterion," IEEE Signal Processing Letters, Vol. 30, 31-35, 2023.
doi:10.1109/LSP.2023.3238912

29. Liu, Chun-Lin and P. P. Vaidyanathan, "Optimizing minimum redundancy arrays for robustness," 2018 Conference Record of 52nd Asilomar Conference on Signals, Systems, and Computers, 79-83, Oct. 2018.

30. Ma, Wing-Kin, Tsung-Han Hsieh, and Chong-Yung Chi, "DOA estimation of quasi-stationary signals via Khatri-Rao subspace," 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2165-2168, Apr. 2009.
doi:10.1109/ICASSP.2009.4960046