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ABSTRACT: In this paper, we propose a new sparse linear array (SLA) that enjoys a hole-free difference co-array (DCA) and closed-form
expressions for its sensor positions. The proposed configuration is valid for arrays containing seven or more sensors (N ≥ 7). Exact
expressions for the array aperture and achievable degrees of freedom (DOFs) have been derived. Numerical simulations were performed
using MATLAB to reinforce the theoretical understanding. The main aim of this study is not to claim superiority over any existing SLA
design, but to report that we have found a new number sequence that can act as an SLA. Except for being highly susceptible to mutual
coupling, the proposed array has all the desirable features of a good SLA. We observed that the proposed array is on par with other SLAs
for N < 20. However, for 20 or more sensors, the array aperture does not scale rapidly in proportion to the added sensors and fails
to match the resolution and/or DOFs offered by other sparse arrays. Nevertheless, the proposed sparse array is based on a unique and
previously unknown number sequence.

1. INTRODUCTION

Sensor arrays have long been studied in various fields, such
as radar, sonar, audio beamforming, chemical sensing, med-

ical imaging, and wireless communications [1]. Sparse linear
arrays (SLAs) are special sensor arrays capable of providing
apertures on par with uniform linear arrays (ULAs) while re-
quiring fewer sensors [2]. Consequently, SLAs provide huge
savings in system costs and can aid in sustainable/green com-
puting. The design of SLAs has received renewed attention in
the past decade, given their ability to perform angle estimation
in underdetermined cases (i.e., when there are more source an-
gles to estimate than the number of sensors in the array) [3].
Sparse arrays are generally studied in the co-array do-

main. Co-array processing provides additional degrees of
freedom (DOFs) that cannot be exploited if DOA estima-
tion was to be performed directly on the physical array.
DOFs refer to the number of detectable source angles. This
process relies on the continuity of the co-array. For exam-
ple, a sparse array with sensors at {0, 2, 5, 6}, normalized
to half the wavelength, can generate all spatial lags (dif-
ferences) from 0 to 6. This results in a difference set of
{0,−1,−4,−6, 1, 0,−3,−5, 4, 3, 0,−2, 6, 5, 2, 0}. The dif-
ference set consists of all pairwise self- and cross-differences
between the sensor locations in the physical array. The corre-
sponding DCA is {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}.
Note that the repeating lag of zero from the difference set is
considered only once.
Sparse linear arrays (SLAs), such as minimum redundancy

array (MRA) andminimum hole array (MHA), were introduced
in the 1960s and were primarily used for radio astronomy [4, 5].
MRAs andMHAs do not have closed-form expressions for sen-
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sor positions, and hence, exhaustive searching had to be em-
ployed to determine the optimum configurations. Coprime ar-
rays have exact equations to determine the sensor positions but
could not provide hole-free DCAs. In contrast, nested arrays
provide hole-freeDCAs alongwith closed-form expressions for
sensor positions [6, 7]. The past decade (2010–2020) witnessed
many novel sparse array designs, such as the super-nested array,
augmented nested array, and improved nested array, to name a
few [8–10]. A thorough review of the characteristics of various
SLAs can be found in [11].
Many SLAs have been introduced in the past five years. Of

these, the maximum inter-element spacing constraint (MISC)
array is noteworthy [12]. The MISC array has received im-
mediate and widespread attention from sparse array designers
owing to its elegant formulation and immunity to mutual cou-
pling. Although many SLAs were introduced after MISC, they
either provide smaller apertures or are highly prone to mutual
coupling. For example, the improved coprime nested array
(ICNA), the ULA fitting with three base layers (UF-3BL), and
the ULA fitting with four base layers (UF-4BL) have lower mu-
tual coupling than MISC but cannot provide apertures as large
as it does [13, 14].
On the other hand, the one-sided or two-sided extended

nested array (OS/TS-ENA), the flexible extended nested ar-
ray with multiple subarrays-I (f-ENAMS-I), the f-ENAMS-II,
and the generalized extended nested array based on the MISC
criterion (GENAMS) possess wider apertures than the MISC
for a given number of sensors but are not as robust as the
MISC against mutual coupling [15–17]. Although the im-
proved MISC (IMISC) appears better than the MISC, it cannot
provide a hole-free DCA [18]. Recently, the enhanced MISC
(xMISC) has been introduced, which outperforms the classical
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MISC both in terms of the aperture offered and immunity to
mutual coupling [19].
Although many SLA configurations exist, none provide a

fixed increment in the array aperture for each added sensor. For
instance, consider an array of N sensors that can provide an
aperture L. If this array can provide an aperture of L+ x with
N +1 sensors and L+2x withN +2 sensors, then it is said to
have a fixed aperture increment of x units for each additional
sensor. Such a property cannot be observed in existing SLAs.
Therefore, we propose a novel SLA whose aperture follows an
arithmetic progression with respect to the number of sensors.
The proposed SLA is based on a naturally occurring number
sequence that possesses almost all the properties desired for a
good SLA. The proposed array can be designed instantly, as it
has closed-form expressions for sensor positions. It also has a
hole-free difference co-array. The proposed array is not supe-
rior to existing arrays in any sense. However, its formulation is
based on a unique and previously unknown number sequence.
The specific contributions of this paper are:

• A novel SLA configuration has been proposed based on a
new number sequence. The specialty of this array is that
its aperture follows an arithmetic progression for each ad-
ditional sensor.

• Exact expressions for the array aperture and the DOFs of-
fered have been derived.

• It is proved that the proposed array has a hole-free DCA.

Although the design of sparse arrays appears to be a math-
ematical problem on its surface (finding closed-form expres-
sions for sensor positions such that the DCA is hole-free), it has
many practical implications in real systems. There is a need to
combine the antenna design, array synthesis, and array signal
processing, as outlined in [20]. Advancements in the Internet of
Things (IoT) and fifth-generation communication systems (5G)
have enabled the existence of multiple tiny devices in a small
area. Sidelobe level (SLL) minimization plays a major role
in reducing interference between closely spaced devices [21–
23]. Linear antenna arrays are widely used in mobile handsets
and IoT devices. A slotted waveguide antenna array for indoor
5G applications was proposed in [24]. This approach essen-
tially differs from microstrip or substrate-integrated waveguide
(SIW) approaches, which are currently popular for antenna de-
sign [25–27].
The rest of the paper is organized as follows. Section 2 de-

scribes the relevant sparse array terminology. Section 3 de-
scribes the design of the proposed SLA. Section 4 discusses
the numerical simulation results obtained usingMATLAB. Sec-
tion 5 lists the drawbacks of the proposed method. Section 6
concludes the paper with a few research directions.

2. BASIC SPARSE ARRAY TERMINOLOGY
This section briefly discusses the relevant sparse array termi-
nology required to understand the ideas presented here.

2.1. Difference Co-Array
Consider an N -element linear array with physical sensors at
Z = {z1, z2, ..., zN}, normalized to half the wavelength. The
difference set H denotes all possible differences in Z (self- and
cross-differences) and is given by

H = {zi − zj ; i, j = 1, 2, ..., N} . (1)

Each entry in the difference setH is called a spatial lag. The
sorted and nonrepeating entries of H form the difference co-
array (DCA) D. As the last sensor of Z is located at zN its
DCA should contain all spatial lags from −zN to +zN includ-
ing zero. In short, D should be continuous from [−zN , zN ]. A
missing spatial lag forms a hole in the DCA. In general, hole-
free DCAs are preferred because they aid in unambiguous DOA
estimation. However, certain array types may contain holes in
their DCAs. The set U denotes the central hole-free portion of
D. If the array is hole-free, then D = U.

2.2. Weight Function
The number of times a spatial lag appears in the difference set
denotes its weight. The weight function lists the weights of all
possible spatial lags in the DCA and is defined as follows:

w (m) = |{(zi, zj); i, j = 1, 2, ..., N : zi − zj = m}| (2)

where w(m) denotes the number of sensor pairs in the array
with a separation of m (i.e., mλ/2). The function |.| denotes
the cardinality.

2.3. Signal Model
The signal model is based on coarray processing and is de-
scribed in Appendix A as it is widely available in the existing
literature.

3. THE PROPOSED SPARSE LINEAR ARRAY (SLA)
The proposed sparse array configuration for N sensors can be
obtained by defining a scalar p = N − 6. The following num-
ber sequence denotes the sensor positions in the physical array
(relative to half the wavelength)

S =


ULA segment of p sensors︷ ︸︸ ︷
0, 1, 2, ..., p− 1 ,

Last 6 sensors that bestow sparsity︷ ︸︸ ︷
(2p), (3p+ 2), (4p+ 4), (5p+ 4), (6p+ 5), (7p+ 5)

 . (3)

Note that the proposed SLA configuration is valid for arrays
containing seven or more sensors (N ≥ 7, as proved shortly).

3.1. Array Aperture
It can be readily seen from (3) that the first sensor of the array
lies at the origin, and the last sensor lies at 7p + 5. This gives
an array aperture of
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L = 7p+ 5 = 7N − 37 (4)
Based on (4), we can derive the smallest value of N that satis-
fies the sparse array configuration given by (3). The proposed
SLA provides an aperture of 7N − 37 for N sensors. On the
other hand, a ULA with the same number of sensors can pro-
vide an aperture of only N − 1. If S in (3) were to denote a
sparse array, the aperture L should exceed N − 1. By solving
the inequality 7N − 37 > N − 1, we find that the proposed
SLA configuration in (3) is valid for N > 6. Hence, at least
seven sensors are required to realize the proposed array.
One can also observe that the array aperture increases at a

constant rate for each added sensor, i.e., there is a fixed incre-
ment of seven units of aperture for each added sensor. For
instance, arrays with 16, 17, and 18 sensors provide aper-
tures of 75, 82, and 89, respectively. It is rare to see SLAs
whose apertures follow such arithmetic progressions. This fea-
ture of a fixed aperture increment is a boon for the array de-
signer. Imagine a designer who wants an array with a half-
power beamwidth/angular resolution of 5◦. Then, as per the
Rayleigh resolution limit (θ◦res ∼= 100/N), an aperture of at
least L = 20 is required. By solving (4), we find that N = 9
can provide the desired aperture. Now, consider another ap-
plication that requires a resolution of 3◦, which roughly corre-
sponds to Lnew = 33. The designer need not solve (4) again.
Instead, as the difference between the two apertures is 13, it is
sufficient to select an array that has two more sensors than the
previous one, as each additional sensor provides an aperture in-
crement of seven units.

3.2. DCA Span and DOFs Offered by the Proposed Array

The DCA of the proposed array would be hole-free from
[−L, L] (as proved next). Therefore, the DCA span D =
2L+ 1 works out to be

D = 14N − 73 (5)

In fact, D represents the DOFs of the proposed array. More-
over, because of the hole-free property of the proposed array,
all DOFs essentially represent uniform DOFs. (uDOF).
Theorem: The number sequence S in (3) generates a hole-free
DCA.

Proof:

1. Consider the ULA segment from 0 to p−1. This ensures that
all spatial lags from 0 to p− 1 occur at least once.
2. Consider the sensor at 2p. It causes 2p − {0 : 1 : p − 1},
thereby resulting in new lags from p + 1 to 2p. The difference
‘p’ can be obtained using the sensor pairs (4p+4, 5p+4) and
(6p+5, 7p+5). Therefore, all spatial lags from 0 to 2p occur
at least once.
3. Consider the sensor at 3p+2. It causes 3p+2−{0 : 1 : p−
1}, thereby creating spatial lags from 2p+3 to 3p+2. The lag
2p+1 can be generated from the sensor pairs (4p+4, 6p+5)
and (5p+4, 7p+5). Similarly, the lag 2p+2 can be generated
using the sensor pair (3p+2, 5p+4). Therefore, we now have
all spatial lags from 0 to 3p+ 2.

4. Consider the sensor at 4p + 4. It causes 4p + 4 − {0 : 1 :
p − 1}, thereby generating differences from 3p + 5 to 4p + 4.
Remember that spatial lags until 3p+2 have been generatedin
the previous steps. The lag 3p + 3 can be generated using the
sensor pair (3p+2, 6p+5), whereas 3p+4 can be generated
using the sensor pair (2p, 5p+4). In short, all spatial lags from
0 to 4p+ 4 have been generated at least onceuntil this point.
5. Consider the sensor at 5p + 4. It causes 5p + 4 −
{0 : 1 : p− 1} resulting in spatial lags from 4p+ 5 to 5p+ 4.
By including the lags generated up to step 4, we have all lags
from 0 to 5p+ 4.
6. Consider the sensor at 6p + 5. It causes 6p + 5 − {0 : 1 :
p − 1}, thereby creating spatial lags from 5p + 6 to 6p + 5.
We have all lags from 0 to 6p + 5 except 5p + 5. The sensor
pair (2p, 7p + 5) can generate the difference 5p + 5. Hence,
we obtain all lags from 0 to 6p+ 5.
7. Consider the last sensor at 7p+5. This causes 7p+5−{0 :
1 : p − 1}, thereby creating lags from 6p + 6 to 7p + 5. Con-
sidering the lags created until the previous step, all lags from 0
to 7p+ 5 have been generated at least once. Similarly, we can
also obtain negative spatial lags from−1 to−(7p+5) (by sub-
tracting a higher position from a lower position). Essentially,
we can say that D is continuous from [−(7p + 5), (7p + 5)]
or simply from [−L,L], thereby proving the hole-free nature of
the DCA. This completes the proof.

4. NUMERICAL SIMULATIONS

4.1. Array Examples with Weight Function
We start our discussion with N = 7, as this is the smallest
value of N for which (3) represents an SLA. For N = 7, we
get p = 1. Sensor positions were computed using (3) to obtain
the array S7 = {0, 2, 5, 8, 9, 11, 12}. The correspondingweight
function is shown in Fig. 1. As expected, all spatial lags have
a weight of at least one, indicating the hole-free nature of the
DCA.
As another example, Fig. 2 shows the weight function of

a 12-element array, whose configuration can be obtained by
substituting p = 6 in (3). The sensor positions are given by
S12 = {0, 1, 2, 3, 4, 5, 12, 20, 28, 34, 41, 47}. It can be ob-
served that the firstN−6 sensors follow the ULA format. Only
the last six sensors produce the desired sparsity. It can be ob-
served from Fig. 2 that the weight w(0) = 12. In fact, w(0) for
any array indicates the number of sensors.

4.2. DOF Ratio
In recent years, the parameter γ(N) witnessed widespread us-
age to compare the DOF capacities of SLAs. γ(N) is known
as the DOF ratio of the array and is defined as

γ (N) =
N2(

uDOF− 1

2

) (6)

γ(N)measures the redundant sensor pairs in the array with ref-
erence to the hole-free span of the co-array. A lower value of
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FIGURE 1. Weight function of the proposed array for N = 7. FIGURE 2. Weight function of the proposed array for N = 12.

FIGURE 3. DOF ratios of SLAs considered in Table 1. FIGURE 4. Array factors of SLAs listed in Table 2.

γ(N) corresponds to larger apertures and higher DOFs. Be-
cause only SLAs with hole-free co-arrays have been considered

in this study, we have
(
uDOF−1

2

)
= L and γ(N) = N2

L .
Next, we compared the values of γ(N) versus N to observe

how the proposed array compares with other SLAs. Table 1
lists the aperture L offered by a few well-known SLAs for dif-
ferent numbers of sensors. The SLAs in Table 1 are short listed
based on the following reasoning: the nested array (NA) is the
first SLA to have closed-form expressions for sensor positions
along with a hole-free DCA [7]. The MISC array is a bench-
mark modern SLA because it provides a perfect balance be-
tween the achievable array aperture and immunity to mutual
coupling [12]. The GENAMS array has the largest aperture
among all SLAs (with closed-form expressions for sensor po-
sitions and a hole-free DCA) known to date [28].
Figure 3 shows the γ(N) versus N values of the aforemen-

tioned arrays computed for each combination ofN and L listed
in Table 1. It can be observed from Fig. 3 that the proposed
array is no different from the other arrays whenN < 20. How-

ever, forN > 20, γ(N) of the proposed array starts to increase
rapidly as its aperture does not scale in proportion to the number
of added sensors.

4.3. Radiation Pattern of SLAs
Next, we compare the radiation pattern of the proposed array
with those of the other SLAs mentioned above. Sparse ar-
rays provide poorer sidelobe rejection than ULAswith the same
apertures. However, it would be interesting to study how they
compare within themselves. As known, the radiation pattern
gives a measure of the array’s directivity and sidelobe suppres-
sion ability. Toward this end, we noted the array configurations
of the nested array, MISC array, GENAMS array, and the pro-
posed array forN = 12 in Table 2 and computed the respective
array factors using MATLAB. The formula for computing the
array factor is provided in Appendix B.
Figure 4 shows the array factors for the SLA configurations

listed in Table 2. Minor variations exist in the sidelobe levels
(SLLs) and main lobe widths (beamwidths) offered by differ-
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TABLE 1. Apertures offered by a few well-known SLAs with hole-free DCAs.

Aperture L
N Nested array MISC GENAMS Proposed
10 29 35 36 33
15 63 73 79 68
20 109 125 138 103
25 168 189 213 138
30 239 265 308 173

TABLE 2. Array configurations of various SLAs for N = 12.

Type of SLA Sensor positions relative to λ/2
Nested Array [0, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41]
MISC array [0, 1, 6, 14, 22, 30, 38, 40, 42, 45, 47, 49]

GENAMS array [0, 1, 3, 6, 13, 20, 27, 34, 41, 45, 49, 50]
Proposed Array [0, 1, 2, 3, 4, 5, 12, 20, 28, 34, 41, 47]

TABLE 3. Array configurations of various SLAs for N = 18.

SLA type Sensor positions relative to λ/2
Nested Array [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89]
MISC array [0, 1, 8, 18, 28, 38, 48, 58, 68, 78, 88, 90, 92, 94, 97, 99, 101, 103]

GENAMS array [0, 1, 2, 5, 10, 15, 26, 37, 48, 59, 70, 81, 92, 98, 104, 110, 111, 112]
Proposed Array [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24, 38, 52, 64, 77, 89]
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-20
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-10
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-4

-2

0
Nested

MISC

GENAMS
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FIGURE 5. Array factors of SLAs listed in Table 3.

ent arrays. Upon careful examination, it can be observed that
the proposed array, MISC array, and GENAMS array provide
sharper radiation characteristics than the nested array, both in
terms of the main lobe width and peak SLLs. This is under-
standable because the nested array has a slightly smaller aper-
ture than other arrays forN = 12. However, it should be noted
that Fig. 4 is a zoomed version of the radiation pattern and cov-
ers only [−10◦, 10◦] of the angular spectrum. If we consider
the full angular spectrum, these variations are negligible.

To obtain further insights into the radiation characteristics of
the above SLAs, we computed their array factors for N = 18.
Table 3 lists the array configurations and Fig. 5 shows the re-
spective array factors. It can be observed that the MISC and
GENAMS arrays provide sharper main beams and better side-
lobe rejection than the proposed array owing to the broader
apertures that they possess.
Of significant interest in Fig. 5 is the difference between the

radiation patterns of the nested and proposed arrays. Both these
arrays provide an aperture of 89 forN = 18, as listed in Table 3.
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Even with the same aperture and number of sensors, the nested
array exhibited better sidelobe characteristics than the proposed
array. Hence, it can be inferred that the radiation pattern of
sparse arrays is a function of the array configuration and not just
the aperture. Similar results have been reported for minimum
redundancy arrays (MRAs) in the past. Array factors of four
MRAs, each with seven sensors and an aperture of 15, were
compared [11]. It was found that the sensitivity of the array
was based on the position of the sensors within the aperture.
It can be observed from Figs. 4 and 5 that the proposed array

has radiation characteristics that are comparable to those of the
other SLAs. The main lobe widths almost the same. However,
the arrays differed in their sidelobe characteristics.

5. LIMITATIONS
Although the proposed array has almost all desirable proper-
ties of SLAs, the fact that there is a dense ULA segment with
N − 6 sensors at the beginning of the array makes it vulnera-
ble to mutual coupling. The weight w(1) is often used to in the
analysis of sparse arrays because it empirically determines the
array’s robustness to mutual coupling. The proposed array has
N − 7 sensor pairs with unit spacing; hence, w(1) = N − 7.
This value is high, indicating that the array is highly suscepti-
ble to mutual coupling. For comparison, the two-level nested
array has wNA(1) ∼= N/2. Other sparse arrays, such as the co-
prime array, super-nested array, augmented nested array, and
minimum redundancy array, possess lower values for w(1) and
are therefore less prone to mutual coupling. The MISC array
is least susceptible to mutual coupling because it has only one
sensor pair with unit spacing, i.e., wmisc(1) = 1.
Another drawback of the proposed array is that its aperture

does not scale exponentially with the number of sensors used.
Consequently, it fails to match the DOFs offered by the afore-
mentioned sparse arrays for N ≥ 20. For example, a 40-
element nested array provides an aperture of 419, whereas the
proposed array provides only an aperture of 243 for the same
number of sensors.

6. CONCLUSION AND FUTURE SCOPE
A new number sequence is proposed that can serve as a sparse
linear array with a hole-free DCA and closed-form expressions
for sensor positions. Numerical simulations conclude that the
proposed array matches the apertures and DOFs offered by
other well-known sparse arrays when there are fewer than 20
sensor elements. Another notable feature of the proposed SLA
is the fixed increment in its aperture for each added sensor, a
property that is rarely observed in sparse arrays. It should be
noted that the array is highly prone to mutual coupling. How-
ever, the novel configuration and straightforward formulation
of the array outweigh these limitations.
Future scope involves modifying the array configuration by

relocating a few sensors from the dense ULA portion to other
positions with the aim of reducing the weight w(1). The same
logic was employed in the past to design super-nested arrays
and augmented nested arrays from two-level nested arrays to
reduce mutual coupling [8, 9].

Another extension of this study is to explore new number se-
quences that can generate sparse arrays robust to single-element
failures. Such arrays have sensors at specified positions to en-
sure that all spatial lags from 0 toL−1 occur at least twice. The
DCA of such arrays remains intact (hole-free) even when one of
the sensors fails. Such new arrays can act as sub-optimal ver-
sions of robust minimum redundancy arrays (RMRAs),as en-
visaged by Liu and Vaidyanathan [29].

APPENDIX A.
The procedure for DOA estimation in SLAs using the co-array
MUSIC algorithm is explained here. An SLA containing N
sensor elements is considered. It is assumed that it offers an
aperture of L units (L > N). The sparse array is laid out on
a linear grid where each grid point is an integer multiple of the
basic unit of inter-element spacing, namely, d = λ/2. In other
words, the locations of the sensors are normalized to half of
the wavelength. K narrowband sources with powers {σ2

i ; i =
1 toK} impinge the array from the angles {θi; i = 1 toK}.
The signal received by the array at the lth time instant or snap-
shot is given by the N × 1 column vector

x (l) = As (l) + n (l) (A1)

where s(l) is theK×1 column vector of incoming complex nar-
rowband signals and is given by s(l) = [s1(l) s2(l) ... sK(l)]T ,
and the N × 1 vector n(l) denotes the noise at each array el-
ement. The noise has a zero mean and variance σ2

n. A =
[a(θ1) a(θ2) · · · a(θK)] is a N × K array manifold matrix
whose columns a(θi); i = 1, 2, ...,K denote the steering vector
for a particular direction θi. Sources are assumed to be uncorre-
lated; therefore, the source covariance matrix Rss is diagonal.
The entries in the individual vectors a(θi) are given by

a (θi) =
[
e−jkz1 sin θi , e−jkz2 sin θi , e−jkz3 sin θi ,

..., e−jkzN sin θi
]T (A2)

where the set Z = {z1, z2, ..., zN} indicates the positions of
the sensors in the linear sparse array. More specifically, the first
sensor lies at the origin and the last sensor lies at the grid point
Ld. The array correlation matrix is given by

Rxx = ARssAH + Rnn (A3)

where Rss denotes the K × K source correlation matrix, and
Rnn denotes theN×N noise correlation matrix. For sparse ar-
rays, further processing steps are required before the correlation
matrix can be subjected to eigenvalue decomposition (EVD).
Given the missing sensors in the physical array, its correlation
matrix does not have all spatial lags. As a result, the array cor-
relation matrix is incomplete and does not represent a Toeplitz
structure. Hence, the analysis is shifted to the coarray domain.
To formulate the problem in the coarray domain, the correla-
tion matrix Rxx has to be vectorized using the procedure given
in [30] to form a new vector y of size N2 × 1 given by

y = vec (Rxx) = Bc+ σ2
ni (A4)

where c =
[
σ2
1 , σ

2
2 , · · · , σ2

K

]T and i = vec(I) =[
eT1 , eT2 , · · · , eTN

]T , with ei being a column vector of all zeros
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except a one at the ith position. B = [b(θ1) b(θ2) · · · b(θP )]
denotes the manifold matrix of an augmented imaginary
array, whose sensors are located at the positions given by the
difference set H of the sparse array. The individual columns
of B denote the steering vectors b(θi) = a∗(θi) ⊗ a(θi)
of size N × 1. The symbol ⊗ denotes the Kronecker
product. The entries a∗(θi) ⊗ a(θi) are of the form
{e−jk(zi−zj) sin θi ; i, j = 1, 2, ..., N} where an individual
entry represents the phase of the signal received by a sensor
positioned at zi − zj . In short, y resembles the signal received
at the difference set array whose manifold is B = A∗ ⊙ A.
The symbol ⊙ denotes the Khatri-Rao (KR) product. The
equivalent source signal vector is given by c and noise is given
by σ2

ni.
Because the unique and sorted entries in the difference set

constitute the difference co-array (DCA), the unique and sorted
rows ofA∗⊙A, denoted by B̃, correspond to the DCAmanifold.

ỹ = unique (y) = B̃c+ σ2
ni (A5)

Here, ỹ represents the signal received at the DCA. Hence, in-
stead of x = As+n, the data in ỹ = B̃c+σ2

ni could be used for
DOA estimation. That is, the DCA can be used for DOA esti-
mation in place of physical SLA. This is the essence of sparse
array processing where the data are converted to second-order
spatial statistics. For a sparse arraywith an apertureL, the DCA
spans from −L to L provided that it is hole-free. To perform
DOA estimation using the co-array MUSIC algorithm, the cor-
relation matrix of the signal received at the DCA is needed. The
data in ỹ could be represented as a Hermitian Toeplitz matrix
structure to obtain the co-array correlation matrix as follows:

Ryy =


ỹ0 ỹ−1

ỹ1 ỹ0
· · · ỹ−L

ỹ−(L−1)
...

. . .
...

ỹL ỹL−1 · · · ỹ0

 (A6)

where ỹi denotes the ith entry of ỹ. ThematrixRyy is a full rank
matrix and can therefore be used to estimate the DOAs through
subspace decomposition. The remaining procedure is similar
to the conventional MUSIC algorithm, in which the correlation
matrix is subjected to EVD to form the signal and noise sub-
spaces. The pseudospectrum is then calculated using the con-
ventional MUSIC procedure.

APPENDIX B.
As per the principle of pattern multiplication, the overall array
response is the product of the element pattern and the array fac-
tor. Considering point sources with isotropic pattern, the far
field pattern is just a function of the array factor which is given
by

AF (θ) =
1

N

N∑
n=1

e−jksn sin θ (B1)

where k = 2π
λ denotes the wavenumber, and N is the number

of array elements, θ = azimuth angle, 0◦ ≤ θ ≤ 180◦. The set
S denotes sensor positions of the sparse array in terms d = λ/2.

Likewise, sn denotes the position of the nth sensor in terms of
d. For instance, the set S = [0, 1, 4, 6] actually denotes sensors
at [0d, 1d, 4d, 6d]. Accordingly, s3 refers to the third sensor in
S and s3 = 4d goes into (B1).
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