Vol. 124
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-05
A Compact, High Gain Ring Metamaterial Unit Cell Loaded Triple Band Antenna for 5G Application
By
Progress In Electromagnetics Research M, Vol. 124, 99-106, 2024
Abstract
A novel planer, compact and quarter-wave transformer-coupled fed multi-band antenna is proposed and designed. The antenna uses a split-ring resonator (SRR) inspired ring metamaterial unit cell. The proposed ring metamaterial unit cell gives single negative (Epsilon negative) behaviour, which improves antenna performance. A partial ground and a quarter-wave transformer-coupled feed line are used to improve the impedance matching of the antenna. The antenna gives multi-band operation at resonating frequencies, 3.5, 8.5, and 13.7 GHz, with 2.9-4.5 GHz, 8.0-10.34 GHz, and 12.3-14.3 GHz, respectively. The maximum gains at resonating frequencies are 1.5 dBi, 4.1 dBi, and 6.5 dBi, with good impedance matching. The novelty of the antenna design is that the loading of the ring unit cell gives resonance at a much smaller wavelength than the resonant wavelength. The proposed antenna provides a miniaturized and multiband response compared to a conventional patch antenna.
Citation
KM Neeshu, and Anjini Kumar Tiwary, "A Compact, High Gain Ring Metamaterial Unit Cell Loaded Triple Band Antenna for 5G Application," Progress In Electromagnetics Research M, Vol. 124, 99-106, 2024.
doi:10.2528/PIERM23101305
References

1. Carver, Keith and James Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, 1981.

2. Liu, Yong, Li-Ming Si, Meng Wei, Pixian Yan, Pengfei Yang, Hongda Lu, Chao Zheng, Yong Yuan, Jinchao Mou, Xin Lv, et al. "Some recent developments of microstrip antenna," International Journal of Antennas and Propagation, Vol. 2012, Article ID 428284, 2012.

3. Quan, Xulin, RongLin Li, YueHui Cui, and Manos M. Tentzeris, "Analysis and design of a compact dual-band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.

4. Suh, Young-Ho and Kai Chang, "Low cost microstrip-fed dual frequency printed dipole antenna for wireless communications," Electronics Letters, Vol. 36, No. 14, 1177-1179, 2000.

5. Liu, Zi Dong, Peter S. Hall, and David Wake, "Dual-frequency planar inverted-F antenna," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1451-1458, 1997.

6. Salonen, Pekka, Mikko Keskilammi, and Markku Kivikoski, "Single-feed dual-band planar inverted-F antenna with U-shaped slot," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 8, 1262-1264, 2000.

7. Wong, Kin-Lu, Liang-Che Chou, and Chih-Ming Su, "Dual-band flat-plate antenna with a shorted parasitic element for laptop applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 539-544, 2005.

8. Rajeshkumar, V. and S. Raghavan, "Trapezoidal ring quad-band fractal antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 56, No. 11, 2545-2548, 2014.

9. Beigi, Payam and Pejman Mohammadi, "A novel small triple-band monopole antenna with crinkle fractal-structure," Aeu-international Journal of Electronics and Communications, Vol. 70, No. 10, 1382-1387, 2016.

10. Pendry, John B., Anthony J. Holden, David J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.

11. Shelby, Richard A., David R. Smith, and Seldon Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.

12. Zhu, Weiren, Ivan D. Rukhlenko, and Malin Premaratne, "Light amplification in zero-index metamaterial with gain inserts," Applied Physics Letters, Vol. 101, No. 3, 031907, 2012.

13. Sarkar, Debdeep, Kushmanda Saurav, and Kumar Vaibhav Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electronics Letters, Vol. 50, No. 21, 1498-1500, 2014.

14. Patel, Shobhit K. and Yogeshwar Kosta, "Complementary split ring resonator metamaterial to achieve multifrequency operation in microstrip-based radiating structure design," Journal of Modern Optics, Vol. 61, No. 3, 249-256, 2014.

15. Antoniades, Marco A. and George V. Eleftheriades, "Multiband compact printed dipole antennas using NRI-TL metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5613-5626, 2012.

16. Balanis, Constantine A., Antenna Theory Analysis and Design, 811, John Wiley & Sons Inc., 2005.

17. Gautam, Anil Kumar, Lalit Kumar, Binod Kumar Kanaujia, and Karumudi Rambabu, "Design of compact F-shaped slot triple-band antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1101-1105, 2015.

18. Kumar, Amit, Mahesh P. Abegaonkar, and Shiban K. Koul, "Triple band miniaturized patch antenna loaded with metamaterial unit cell for defense applications," 2016 11th International Conference on Industrial and Information Systems (iciis), 833-837, 2016.

19. Neeshu, K. M. and Anjini Kumar Tiwary, "Metamaterial loaded antenna with improved efficiency and gain for wideband application," Iete Journal of Research, Vol. 69, No. 3, 1-8, 2021.

20. Tuloti, Seyed Hashem Ramazannia, Pejman Rezaei, and Farzad Tavakkol Hamedani, "High-efficient wideband transmitarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 817-820, 2018.

21. Nosrati, Milad, Pejman Rezaei, Mohammad Danaie, and Shahram Parvizi, "Wideband transmitarray antenna using electric ring resonator shaped slot element," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 15, 2092-2101, 2021.

22. Saraswat, Ritesh K. and Mithilesh Kumar, "A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications," International Journal of Rf and Microwave Computer-aided Engineering, Vol. 29, No. 10, e21893, 2019.

23. Selvi, N. Thamil, P. Thiruvalar Selvan, S. P. K. Babu, and R. Pandeeswari, "Multiband metamaterial-inspired antenna using split ring resonator," Computers & Electrical Engineering, Vol. 84, 106613, 2020.

24. Thankachan, Shiney and Binu Paul, "Metamaterial inspired electrically small multiband monopole antenna using single DNG MTM and ring resonators," Advances in Electrical and Computer Engineering, 2021.

25. Milias, Christos, Rasmus B. Andersen, Pavlos I. Lazaridis, Zaharias D. Zaharis, Bilal Muhammad, Jes T. B. Kristensen, Albena Mihovska, and Dan D. S. Hermansen, "Miniaturized multiband metamaterial antennas with dual-band isolation enhancement," IEEE Access, Vol. 10, 64952-64964, 2022.

26. Jha, Pankaj, Anubhav Kumar, and Navneet Sharma, "A metamaterial inspired split ring resonator accomplished multiband antenna for 5G and other wireless applications," Revue Roumatine Des Sciences Techniques --- Série Électrotechnique et Énergétique.