Vol. 116
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-18
A Novel Microwave Equalizer Based on SIR Loading with Internal Coupled-Lines
By
Progress In Electromagnetics Research Letters, Vol. 116, 95-100, 2024
Abstract
This paper proposes the design of a microwave equalizer based on SIR loading with internal coupled-line. By loading a ring-type stepped impedance resonator (SIR) with internal coupled-lines, a microwave equalizer with positive slope transmission characteristics is presented. The frequency response is synthesized using a second-order SIR, and a detailed theoretical derivation of the equalizer is presented. A prototype of the equalizer is fabricated and measured to validate its expected performance, with the measurements showing good agreement with the predictions. The microwave amplitude equalizer demonstrates the necessary gain slope across its entire operational frequency range. Finally, a potential design scheme for a microwave amplitude equalizer is proposed.
Citation
Xiaolei Yang, Honglin Zhang, Wencheng Ren, Chunlei Yuan, Lijie Xu, and Dong Chen, "A Novel Microwave Equalizer Based on SIR Loading with Internal Coupled-Lines," Progress In Electromagnetics Research Letters, Vol. 116, 95-100, 2024.
doi:10.2528/PIERL23101302
References

1. Gmitrovic, Miodrag V., Bratislav D. Milovanovic, and Zlatoljub D. Milosavljevic, "Fixed and variable slope CATV amplitude equalizers," Applied Microwave and Wireless, Vol. 10, 76-85, 1998.

2. Kampa, Jerzy and Krystyna Petrus, "Microwave amplitude equalizer," 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON-2000. Conference Proceedings (IEEE Cat. No. 00ex428), Vol. 1, 37-40, 2000.

3. Wang, Yongfei, Dongfang Zhou, Yi Zhang, and Chaowen Chang, "Using multilayered substrate integrated waveguide to design microwave gain equalizer," Advances in Materials Science and Engineering, Vol. 30, 1341-1344, 2014.

4. Tang, Sheng, Yong Zhang, and Jing Zhang, "A novel compact size microstrip equalizer based on spiral resonators," 2010 International Conference on Microwave and Millimeter Wave Technology, 730-733, 2010.

5. Wang, Zhongxun and Baofu Jia, "Research on microwave equalizer of aperture-backed technique," 2008 8th International Symposium on Antennas, Propagation and EM Theory, 1375-1378, 2008.

6. Mellor, Douglas J., "On the design of matched equalizers of prescribed gain versus frequency profiles," 1977 IEEE MTT-S International Microwave Symposium Digest, 308-311, 1977.

7. Ying, Zhao, Dong-Fang Zhou, Zhong-Xia Niu, and Bin Zhao, "A improved branch resonator and it's application in microstrip equalizer designing," 2007 International Conference on Microwave and Millimeter Wave Technology, 1-4, 2007.

8. Ying, Zhao, Dong-Fang Zhou, Zhong-Xia Niu, and De-Wei Zhang, "Study of the influence of resistors for microstrip equalizer," 2005 Asia-Pacific Microwave Conference Proceedings, Vol. 5, 4, 2005.

9. Zhang, Yong, Mengguo Yu, Bo Yan, and Ruimin Xu, "Research on the millimeter wave power equalizer," 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies For Wireless Communications, 446-449, 2007.

10. Zhou, Tai-Fu, Yong Zhang, and Rui-Min Xu, "Research on the millimeter wave gain equalizer," 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics, 180-182, 2011.

11. Gourav, Chaturvedi and Gaurav Anand, "Non-reflective broadband microwave gain equalizer for EW applications," 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), 1-4, 2019.

12. Jiang, Shu, Jinping Xu, and Dezhi Ding, "A 5-19 GHz amplitude-shaped power amplifier using microstrip sirs loaded with film resistors," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 1, 138-140, 2016.

13. Pozar, David M., Microwave Engineering, John Wiley & Sons, 2011.