Vol. 121
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-27
A Phase Noise Optimized FMCW Radar System for Data Transmission
By
Progress In Electromagnetics Research M, Vol. 121, 127-137, 2023
Abstract
This paper presents a method for using a 120 GHz frequency-modulated continuous wave (FMCW) radar system for communication. The transmitting unit of the FMCW radar partly consists of a phase locked loop (PLL) control. Through modification, the functionality of this structure is extended for data transmission. The two modes of operation, i.e. radar measurement and data transmission, impose different requirements on the design of the PLL, such as the necessary bandwidth. We show how the phase noise and hence the quality of data transmission can be improved by varying the charge pump (CP) current of the PLL. Simulation results and measurements prove the data transmission potential of the presented method for industrial applications in the field of short-range communication.
Citation
Andreas Wanjek, Linus Hampel, Thomas Schäfer, and Thomas Zwick, "A Phase Noise Optimized FMCW Radar System for Data Transmission," Progress In Electromagnetics Research M, Vol. 121, 127-137, 2023.
doi:10.2528/PIERM23100905
References

1. PricewaterhouseCoopers GmbH "Digital Factories 2020 Shaping the future of manufactoring," https://www.pwc.de/de/digitale-transformation/digital-factories-2020-shaping-the-future-of-manufacturing.pdf, Accessed on 08/05/2020.

2. STMicroelectronics, N. V., "Predictive Maintenance with ST sensors," https://www.st.com/content/dam/sat-2022/documents/st-predictive-maintenance-with-stsensors.pdf, Accessed on 08/20/2020.

3. MEYSENS GmbH "Autonomous Guided Vehicles (AGVs)-Opportunities and threats," https://toposens.com/wp-content/uploads/2021/06/AGV_Collision_Avoidance.pdf, Accessed on 08/08/2020.

4. Stove, A., "Modern FMCW radar-techniques and applications," First European Radar Conference, 2004. EURAD., 149-152, Oct. 2004.

5. Zhong, Ray Y., Xun Xu, Eberhard Klotz, and Stephen T. Newman, "Intelligent Manufacturing in the Context of Industry 4.0: A Review," Engineering, Vol. 3, No. 5, 616-630, Oct. 2017.
doi:10.1016/J.ENG.2017.05.015

6. Lozoya, C., P. Marti, A. Velasco, and J. M. Fuertes, "Effective Real-Time Wireless Control of an Autonomous Guided Vehicle," 2007 IEEE International Symposium on Industrial Electronics, 2876-2881, Vigo, Spain, Jun. 2007. ISSN: 2163-5145.
doi:10.1109/ISIE.2007.4375070

7. Zhan, Ming and Kan Yu, "Wireless Communication Technologies in Automated Guided Vehicles: Survey and Analysis," Iecon 2018 - 44th Annual Conference of The IEEE Industrial Electronics Society, 4155-4161, Washington, Dc, Oct. 2018. ISSN: 2577-1647.

8. Ma, Dingyou, Nir Shlezinger, Tianyao Huang, Yimin Liu, and Yonina C. Eldar, "Joint Radar-Communication Strategies for Autonomous Vehicles: Combining Two Key Automotive Technologies," IEEE Signal Processing Magazine, Vol. 37, No. 4, 85-97, Jul. 2020.
doi:10.1109/MSP.2020.2983832

9. Paul, Bryan, Alex R. Chiriyath, and Daniel W. Bliss, "Survey of RF Communications and Sensing Convergence Research," IEEE Access, Vol. 5, 252-270, 2017.
doi:10.1109/ACCESS.2016.2639038

10. Amjad, M. S., M. Schettler, S. Dimce, and F. Dressler, "Inband Full-Duplex Relaying for RADCOM-based Cooperative Driving," 2020 IEEE Vehicular Networking Conference (VNC), 1–8, Dec. 2020. ISSN: 2157-9865.

11. De Oliveira, Lucas Giroto, Benjamin Nuss, Mohamad Basim Alabd, Axel Diewald, Mario Pauli, and Thomas Zwick, "Joint Radar-Communication Systems: Modulation Schemes and System Design," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 3, 1521-1551, Mar. 2022.
doi:10.1109/TMTT.2021.3126887

12. Thomae, Reiner, Thomas Dallmann, Snezhana Jovanoska, Peter Knott, and Anke Schmeink, "Joint Communication and Radar Sensing: An Overview," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Electr Network, Mar. 2021.

13. Liu, Fan, Christos Masouros, Athina P. Petropulu, Hugh Griffiths, and Lajos Hanzo, "Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead," IEEE Transactions on Communications, Vol. 68, No. 6, 3834-3862, Jun. 2020.
doi:10.1109/TCOMM.2020.2973976

14. Martone, Anthony and Moeness Amin, "A view on radar and communication systems coexistence and dual functionality in the era of spectrum sensing," Digital Signal Processing, Vol. 119, 103135, Dec. 2021.
doi:10.1016/j.dsp.2021.103135

15. Fettweis, G., M. Schlüter, R. Thomä, H. Boche, H. Schotten, and A. Barreto, "Joint Communications & Sensing," VDE ITG.

16. Mazahir, Sana, Sajid Ahmed, and Mohamed-Slim Alouini, "A Survey on Joint Communication-Radar Systems," Frontiers in Communications and Networks, Vol. 1, Feb. 2021.
doi:10.3389/frcmn.2020.619483

17. Han, Liang and Ke Wu, "Joint wireless communication and radar sensing systems-state of the art and future prospects," IET Microwaves, Antennas & Propagation, Vol. 7, No. 11, 876-885, Aug. 2013.
doi:10.1049/iet-map.2012.0450

18. Hassanien, Aboulnasr, Moeness G. Amin, Elias Aboutanios, and Braham Himed, "Dual-Function Radar Communication Systems: A Solution to the Spectrum Congestion Problem," IEEE Signal Processing Magazine, Vol. 36, No. 5, 115-126, Sep. 2019.
doi:10.1109/MSP.2019.2900571

19. Garmatyuk, Dmitriy, Jonathan Schuerger, and Kyle Kauffman, "Multifunctional Software-Defined Radar Sensor and Data Communication System," IEEE Sensors Journal, Vol. 11, No. 1, 99-106, Jan. 2011.
doi:10.1109/JSEN.2010.2052100

20. Sit, Yoke Leen and Thomas Zwick, "MIMO OFDM radar with communication and interference cancellation features," 2014 IEEE Radar Conference, 265-268, Cincinnati, Oh, May 2014. ISSN: 2375-5318.

21. Nuss, Benjamin, Axel Diewald, Jan Schoepfel, Daniel Martini, Nils Pohl, and Thomas Zwick, "76GHz OFDM Radar Demonstrator with Real-Time Processing for Automotive Applications," 2020 IEEE MTT-S 16 Wanjek International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, Nov. 2020.

22. De Oliveira, Lucas Giroto, Benjamin Nuss, Mohamad Basim Alabd, Yueheng Li, Liquan Yu, and Thomas Zwick, "MIMO-OCDM-based Joint Radar Sensing and Communication," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Dusseldorf, Germany, IEEE, Mar. 2021.

23. Wang, Chang-Heng and Onur Altintas, "Demo: A Joint Radar and Communication System Based on Commercially Available FMCW Radar," 2018 IEEE Vehicular Networking Conference (VNC), 1-2, Taipei, Taiwan, Dec. 2018. ISSN: 2157-9865.

24. Scheiblhofer, Werner, Reinhard Feger, Andreas Haderer, and Andreas Stelzer, "Method to embed a data-link on FMCW chirps for communication between cooperative 77-GHz radar stations," 2015 European Radar Conference (EuRAD), 181-184, Paris, France, Sep. 2015.

25. Dwivedi, Saumya, Andre Noll Barreto, Padmanava Sen, and Gerhard Fettweis, "Target Detection in Joint Frequency Modulated Continuous Wave (FMCW) Radar-Communication System," 2019 16th International Symposium on Wireless Communication Systems (ISWCS), 277-282, Oulu, Finland, Aug. 2019. ISSN: 2154-0225.
doi:10.1109/iswcs.2019.8877258

26. Dwivedi, Saumya, Marco Zoli, Andre N. Barreto, Padmanava Sen, and Gerhard Fettweis, "Secure Joint Communications and Sensing using Chirp Modulation," 2020 2nd 6G Wireless Summit (6G SUMMIT), 1-5, Electr Network, Mar. 2020.
doi:10.1109/6gsummit49458.2020.9083884

27. Barrenechea, Peli, Frans Elferink, and Johan Janssen, "FMCW radar with broadband communication capability," 2007 European Radar Conference, 130-133, Munich, Germany, Oct. 2007.
doi:10.1109/EURAD.2007.4404954

28. Lampel, Franz, R. Firat Tigrek, Alex Alvarado, and Frans M. J. Willems, "A Performance Enhancement Technique for a Joint FMCW RadCom System," 2019 16th European Radar Conference (EuRAD), 169-172, Paris, France, Oct. 2019.

29. Dokhanchi, Sayed Hossein, Bhavani Shankar R. Mysore, Thomas Stifter, and Bjoern Ottersten, "Multicarrier Phase Modulated Continuous Waveform for Automotive Joint Radar-Communication System," 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 765-769, Kalamata, Greece, Jun. 2018. ISSN: 1948-3252.

30. Yattoun, I., T. Labia, A. Peden, G. Landrac, M. Ney, M. Resibois, J. M. Bonnin, A. Baghdadi, N. Montavont, M. Fujise, and Y. Le Roux, "A Millimetre communication system for IVC," 2007 7th International Conference on ITS Telecommunications, 281-286, Sophia Antipolis, France, Jun. 2007.

31. Konno, K. and S. Koshikawa, "Millimeter-wave dual mode radar for headway control in IVHS," 1997 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1261-1264, Jun. 1997. ISSN: 0149-645X.
doi:10.1109/MWSYM.1997.596556

32. Zhang, Hui, Lin Li, and Ke Wu, "24GHz Software-Defined Radar System for Automotive Applications," 2007 European Conference on Wireless Technologies, 88-91, Munich, Germany, Oct. 2007.

33. Han, L. and K. Wu, "Radar and radio data fusion platform for future intelligent transportation system," The 7th European Radar Conference, 65-68, Sep. 2010.

34. Guo, Y. and Z. Xie, "Design of PLL Frequency Synthesizer in Frequency Hopping Communication System," 2010 International Conference on Communications and Mobile Computing, Vol. 3, 138-141, Apr. 2010.

35. Markulic, Nereo, Kuba Raczkowski, Ewout Martens, Pedro Emiliano Paro Filho, Benjamin Hershberg, Piet Wambacq, and Jan Craninckx, "A DTC-Based Subsampling PLL Capable of Self-Calibrated Fractional Synthesis and Two-Point Modulation," IEEE Journal of Solid-State Circuits, Vol. 51, No. 12, SI, 3078-3092, Dec. 2016.
doi:10.1109/JSSC.2016.2596766

36. Neurauter, B., G. Märzinger, A. Schwarz, R. Vuketich, M. Scholz, R. Weigel, and J. Fenk, "GSM 900/DCS 1800 fractional-N modulator with two-point-modulation," 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), 425-428, Seattle, WA, USA, Jun. IEEE, 2002.
doi:10.1109/MWSYM.2002.1011646

37. Grebenkemper, C. J., "Local Oscillator Phase Noise and its Effect on Receiver Performance," Watkins-Johnson Company Tech-notes, Vol. 8, No. 6, 1981.

38. Rubiola, Enrico and Francois Vernotte, "The Companion of Enrico’s Chart for Phase Noise and Two-Sample Variances," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 7, 2996-3025, Jul. 2023.
doi:10.1109/TMTT.2023.3238267

39. "Using Clock Jitter Analysis to Reduce BER in Serial Data Applications," Sep. 2020.

40. Trudgen, G., "PHASE NOISE / JITTER IN CRYSTAL OSCILLATORS," Jul. 2009.

41. Lance, A., W. Seal, F. Mendoza, and N. Hudson, "Phase Noise Measurements in the Frequency Domain," MTT-S International Microwave Symposium Digest, Vol. 77, 110-113, MTT005, 1977.

42. Siddiq, K., M. K. Hobden, S. R. Pennock, and R. J. Watson, "Phase Noise in FMCW Radar Systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, 70-81, Feb. 2019.
doi:10.1109/TAES.2018.2847999

43. Banerjee, D., PLL performance, simulation and design, fifth Ed., Dog Ear Publishing, Indianapolis, May 2017.

44. Weyer, D. J., "Design of Digital FMCW Chirp Synthesizer PLLs Using Continuous-Time Delta-Sigma Time-to-Digital Converters," University of Michigan, 2018.

45. WALLS, F. L. and A. DEMARCHI, "RF Spectrum of a Signal after Frequency Multiplication; Measurement and Comparison with a Simple Calculation," IEEE Transactions on Instrumentation and Measurement, Vol. 24, No. 3, 210-217, Sep. 1975.
doi:10.1109/TIM.1975.4314411

46. Hewlett, P., "RF & MICROWAVE PHASE NOISE MEASUREMENT SEMINAR," Jun. 1985. accessed at 27.07.2023.

47. Sotiriadis, Paul P., "On the generation of random dithering sequences with specified both power spectral density and probability density function," 2014 IEEE International Frequency Control Symposium (FCS), 536-540, Taipei, Taiwan, May 2014.