Vol. 115
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-12-18
A Quad-Band High-Isolated MIMO Microstrip Antenna for Coal Mine Communication
By
Progress In Electromagnetics Research Letters, Vol. 115, 39-46, 2024
Abstract
In this letter, a quad-band high-isolated MIMO microstrip antenna is designed for coal mine communications, which can operate at DCS1800, UMTS, WiMAX, WiFi, and 5G NR simultaneously. Firstly, the qual-band property is realized by designing a quaddent structure. In particular, three L-shaped branches (separately operating at 2.6 GHz, 3.5 GHz, and 4.8 GHz) are successively loaded on a monopole antenna (operating at 1.9 GHz). In the sequel, by symmetrically placing two quaddent structures with spacing of 0.19λ, a MIMO antenna is designed. At this time, the isolation level of the MIMO antenna can be as high as around 8 dB. To improve the performance of the MIMO antenna, an inverted cross-shaped branch is loaded on and two rectangular slots are etched off the ground successively between the two elements. In this way, an isolation level of over 20 dB can be achieved across the whole operating frequency bands. To verify the performance of the designed antenna, a prototype is fabricated and tested, and good agreement between the simulated and measured results indicates that the proposed antenna can completely cover DCS1800, UMTS, WiMAX, WiFi, and 5G NR (1.67~2.28 GHz, 2.39~2.79 GHz, 3.13~3.74 GHz and 4.69~5.34 GHz) for mining.
Citation
Yanhong Xu, Peipei Dong, Anyi Wang, Jianqiang Hou, and Shanshan Li, "A Quad-Band High-Isolated MIMO Microstrip Antenna for Coal Mine Communication," Progress In Electromagnetics Research Letters, Vol. 115, 39-46, 2024.
doi:10.2528/PIERL23100703
References

1. Dahlman, Erik, Stefan Parkvall, and Johan Sköld, 5G NR: The Next Generation Wireless Access Technology, Academic Press, New York, USA, 2018.

2. Marcus, Michael J., "5G and `IMT for 2020 and beyond' [Spectrum Policy and Regulatory Issues]," IEEE Wireless Communications, Vol. 22, No. 4, 2-3, Aug. 2015.
doi:10.1109/MWC.2015.7224717

3. Xu, Yanhong, Zhiwen Zhang, Anyi Wang, and Jianqiang Hou, "Design of three multibranch microstrip antennas compatible with WiMAX/WiFi/4G/5G NR for coal mine applications," Microwave and Optical Technology Letters, Vol. 65, No. 3, 892-900, Mar. 2023.
doi:10.1002/mop.33569

4. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, Dec. 2006.
doi:10.1002/dac.784

5. Zhang, Yi-Ming, Qi-Cheng Ye, Gert Frolund Pedersen, and Shuai Zhang, "A simple decoupling network with filtering response for patch antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7427-7439, Nov. 2021.
doi:10.1109/TAP.2021.3070632

6. Varzakas, P. and G. S. Tombras, "Spectral efficiency for a hybrid DS/FH code-division multiple-access system in cellular mobile radio," IEEE Transactions on Vehicular Technology, Vol. 50, No. 6, 1321-1327, Nov. 2001.
doi:10.1109/25.966565

7. Varzakas, P. and G. S. Tombras, "Comparative estimate of user capacity for FDMA and direct-sequence CDMA in mobile radio," International Journal of Electronics, Vol. 83, No. 1, 133-144, 1997.

8. Janaswamy, Ramakrishna, "Effect of element mutual coupling on the capacity of fixed length linear arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 157-160, 2002.
doi:10.1109/LAWP.2002.807570

9. Li, Guihong, Huiqing Zhai, Zhihui Ma, Changhong Liang, Rongdao Yu, and Sheng Liu, "Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1128-1131, 2014.
doi:10.1109/LAWP.2014.2330065

10. Rao, Nelapati Ananda and Lalitha Bhavani Konkyana, "Four element MIMO antenna for wireless body area network and advanced wireless services applications," Progress In Electromagnetics Research C, Vol. 136, 151-160, 2023.

11. Zhang, Shuai and Gert Frolund Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/LAWP.2015.2435992

12. Cai, Jing, Jianlin Huang, Bo Chen, Lingrong Shen, Tian Hong Loh, and Gui Liu, "A defected circular ring dual-band MIMO antenna with high isolation for 5G and IEEE 802.11 a/ac/ax," Progress In Electromagnetics Research M, Vol. 113, 237-247, 2022.
doi:10.2528/PIERM22080104

13. Dkiouak, Aziz, Mohssine El Ouahabi, Saad Chakkor, Mostafa Baghouri, Alia Zakriti, and Youssef Lagmich, "High performance UWB MIMO antenna by using neutralization line technique," Progress In Electromagnetics Research C, Vol. 131, 185-195, 2023.
doi:10.2528/PIERC23011104

14. Song, Wenliang, Xiao-Wei Zhu, Lei Wang, and Wei Hong, "Simple structure E-plane decoupled millimeter wave antenna based on current cancellation model," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9871-9876, Oct. 2022.
doi:10.1109/TAP.2022.3179515

15. Khan, Muhammad K. and Quanyuan Feng, "A novel two port MIMO antenna having dual stopped-band functionality and enhanced isolation," Progress In Electromagnetics Research M, Vol. 113, 173-185, 2022.
doi:10.2528/PIERM22071403

16. Gopal, Kondapalli Venu and Yarravarapu Srinivasa Rao, "Mutual coupling reduction in UWB MIMO antenna using T-shaped stub," Progress In Electromagnetics Research Letters, Vol. 112, 77-85, 2023.
doi:10.2528/PIERL23073103

17. Guo, Jiayin, Feng Liu, Luyu Zhao, Guan-Long Huang, Wei Lin, and Yingzeng Yin, "Partial reflective decoupling superstrate for dual-polarized antennas application considering power combining effects," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9855-9860, Oct. 2022.
doi:10.1109/TAP.2022.3177513

18. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, Jan. 2020.
doi:10.1109/TAP.2019.2940316

19. Ye, Qi-Cheng, Yi-Ming Zhang, Jia-Lin Li, Gert Frolund Pedersen, and Shuai Zhang, "High-isolation dual-polarized leaky-wave antenna with fixed beam for full-duplex millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7202-7212, Nov. 2021.
doi:10.1109/TAP.2021.3109592

20. Zhang, Xiao-Ke, Yan-Hui Ke, Xue-Ying Wang, Shi-Chang Tang, and Jian-Xin Chen, "Broadband dual-polarized dielectric patch antenna with high isolation for full-duplex communication," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 4, 878-882, Apr. 2023.
doi:10.1109/LAWP.2022.3227239

21. Hei, Yong Qiang, Jia Geng He, and Wen Tao Li, "Wideband decoupled 8-element MIMO antenna for 5G mobile terminal applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1448-1452, Aug. 2021.
doi:10.1109/LAWP.2021.3086261

22. Deng, Jing Ya, Jinyong Li, Luyu Zhao, and Lixin Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2270-2273, 2017.

23. Xu, Yanhong, Peipei Dong, and Anyi Wang, "Design of a high isolation tri-band MIMO antenna for coal mine applications," Journal of Electromagnetic Waves and Applications, Vol. 37, No. 13, 1106-1121, Sep. 2023.
doi:10.1080/09205071.2023.2226332

24. Sharawi, Mohammad S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, Oct. 2013.
doi:10.1109/MAP.2013.6735522

25. Ren, Zhouyou, Anping Zhao, and Shengjie Wu, "MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1367-1371, Jul. 2019.
doi:10.1109/LAWP.2019.2916738

26. Cui, Lun, Jingli Guo, Ying Liu, and Chow-Yen-Desmond Sim, "An 8-element dual-band MIMO antenna with decoupling stub for 5G smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2095-2099, Oct. 2019.
doi:10.1109/LAWP.2019.2937851

27. Chang, Le, Yafang Yu, Kunpeng Wei, and Hanyang Wang, "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5212-5220, Aug. 2019.
doi:10.1109/TAP.2019.2913738

28. Xu, Zhan and Changjiang Deng, "High-isolated MIMO antenna design based on pattern diversity for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 467-471, Mar. 2020.
doi:10.1109/LAWP.2020.2966734