Vol. 123
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-01-08
Two Approaches for Designing Circularly Polarized OAM Reflectarrays
By
Progress In Electromagnetics Research M, Vol. 123, 13-21, 2024
Abstract
By calculating the compensation phase distribution from the radiation fields of the feed, two approaches are proposed for reflectarrays (RAs) generating circularly polarized orbital angular momentum (CP-OAM) beams with higher mode purity. Particularly, if the radiation fields are extracted in spherical coordinates rather than Cartesian coordinates, the required phase distribution for generating a CP-OAM beam of +1/-1 mode can be directly obtained according to our mathematical derivation which shows that the spherical components of left-/right-hand circularly polarized (LHCP/RHCP) fields naturally involve the OAM phase term of +1/-1 mode. To better demonstrate our work, the CP-OAM RAs with both smooth and corrugated horns of RHCP as feeds are designed by three approaches: the conventional approach (CA) based on approximation of phase center, and the two approaches based on simulated radiation fields in Cartesian coordinates (CCA) and spherical coordinates (SCA), respectively. Full-wave simulation results show that the OAM mode purity can be enhanced by either CCA or SCA, and the SCA can produce even higher mode purities than CCA when an offset feed is employed.
Citation
Yuxuan Ding, Yunhua Zhang, and Xiaowen Zhao, "Two Approaches for Designing Circularly Polarized OAM Reflectarrays," Progress In Electromagnetics Research M, Vol. 123, 13-21, 2024.
doi:10.2528/PIERM23091802
References

1. Zhang, Weite, Shilie Zheng, Xiaonan Hui, Ruofan Dong, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Mode division multiplexing communication using microwave orbital angular momentum: An experimental study," IEEE Transactions on Wireless Communications, Vol. 16, No. 2, 1308-1318, Feb. 2017.
doi:10.1109/TWC.2016.2645199

2. Liu, Kang, Yongqiang Cheng, Yue Gao, Xiang Li, Yuliang Qin, and Hongqiang Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, Apr. 2017.
doi:10.1063/1.4981253

3. Ge, Xiaohu, Ran Zi, Xusheng Xiong, Qiang Li, and Liang Wang, "Millimeter wave communications with OAM-SM scheme for future mobile networks," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 9, 2163-2177, Sep. 2017.
doi:10.1109/JSAC.2017.2720238

4. Yu, Li, Xiuping Li, Zihang Qi, Hua Zhu, Yuhan Huang, and Zaid Akram, "Wideband circularly polarized high-order bessel beam reflectarray design using multiple-ring-cascade elements," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1226-1230, Jul. 2020.
doi:10.1109/LAWP.2020.2995936

5. Chen, Rui, Wen-Xuan Long, Xiaodong Wang, and Jiandong Li, "Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs," IEEE Transactions on Wireless Communications, Vol. 19, No. 10, 6932-6947, 2020.
doi:10.1109/TWC.2020.3007026

6. Zhang, Chao, Xuefeng Jiang, and Dong Chen, "Signal-to-noise ratio improvement by vortex wave detection with a rotational antenna," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 1020-1029, Feb. 2021.
doi:10.1109/TAP.2020.3016173

7. Ma, Jingcan, Xiyao Song, Yuchen Yao, Zhennan Zheng, Xinlu Gao, and Shanguo Huang, "Research on the purity of orbital angular momentum beam generated by imperfect uniform circular array," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 968-972, Jun. 2021.
doi:10.1109/LAWP.2021.3068287

8. Liu, Dandan, Wei Wu, Liangqi Gui, and Tao Jiang, "OAM mode purity improvement based on antenna array," Digital Communications and Networks, Jan. 2023.

9. Akram, Zaid, Xiuping Li, Zihang Qi, Abdul Aziz, Li Yu, Hua Zhu, Xing Jiang, and Xiaoming Li, "Broadband high-order OAM reflective metasurface with high mode purity using subwavelength element and circular aperture," IEEE Access, Vol. 7, 71963-71971, 2019.
doi:10.1109/ACCESS.2019.2919779

10. Shahmirzadi, Arash Valizade and Ahmed A. Kishk, "OAM carrying vortex beam mode interconversion using modular cascaded transmitarrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3591-3605, Jul. 2022.
doi:10.1109/TMTT.2022.3173748

11. Huang, Hui-Fen and Shuai-Nan Li, "High-efficiency planar reflectarray with small-size for OAM generation at microwave range," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 432-436, Mar. 2019.

12. Chen, Guan-Tao, Yong-Chang Jiao, and Gang Zhao, "A reflectarray for generating wideband circularly polarized orbital angular momentum vortex wave," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 182-186, Jan. 2019.
doi:10.1109/LAWP.2018.2885345

13. Veysi, Mehdi, Caner Guclu, Filippo Capolino, and Yahya Rahmat-Samii, "Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 68-81, Apr. 2018.

14. Ahmed, Zubair, Awab Muhammad, Shafaq Kausar, and Mojeeb Bin Ihsan, "Dual circularly polarized all-metal orbital angular momentum beam reflectarray antenna," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 581-582, Jul. 2022.

15. Wang, Yuxiang, Kuang Zhang, Yueyi Yuan, Xumin Ding, Badreddine Ratni, Shah Nawaz Burokur, and Qun Wu, "Planar vortex beam generator for circularly polarized incidence based on FSS," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1514-1522, Mar. 2020.
doi:10.1109/TAP.2019.2938666

16. Li, Jiu-Sheng and Li-Na Zhang, "Simple terahertz vortex beam generator based on reflective metasurfaces," Optics Express, Vol. 28, No. 24, 36403-36412, Nov. 2020.
doi:10.1364/OE.410681

17. Arrebola, M., Y. Álvarez, J. A. Encinar, and F. Las-Heras, "Accurate analysis of printed reflectarrays considering the near field of the primary feed," IET Microwaves, Antennas & Propagation, Vol. 3, No. 2, 187-194, Mar. 2009.
doi:10.1049/iet-map:20070325

18. Zhou, Min, S. B. Sørensen, O. S. Kim, S. Pivnenko, and G. Toso, "Investigations on accurate analysis of microstrip reflectarrays," 33rd ESA Antenna Workshop on Challenges for Space Antenna Systems, 18-21, Oct. 2011.

19. Smith, Thomas, Ulrich Gothelf, Oleksiy S. Kim, and Olav Breinbjerg, "Design, manufacturing, and testing of a 20/30-GHz dual-band circularly polarized reflectarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1480-1483, 2013.
doi:10.1109/LAWP.2013.2288995

20. Budhu, Jordan and Anthony Grbic, "Perfectly reflecting metasurface reflectarrays: Mutual coupling modeling between unique elements through homogenization," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 122-134, Jan. 2021.
doi:10.1109/TAP.2020.3001450

21. Xue, Wei, Xiaoming Chen, Hongyu Shi, Huilin Huang, Juan Chen, and Anxue Zhang, "Evaluation of the purity of OAM modes using the reverberation chamber technique," 2020 14th European Conference on Antennas and Propagation (EuCAP 2020), 1-4, Copenhagen, Denmark, Mar. 2020.

22. Ali, Ali, Mohsen Khalily, Tim Brown, and Rahim Tafazolli, "Beam-steering capability for OAM-based reflectarray at 5G-mmwave frequencies," IET Microwaves, Antennas & Propagation, Vol. 17, No. 2, 162-168, Feb. 2023.
doi:10.1049/mia2.12333

23. Rao, Madasu Venkateswara, Jagannath Malik, S. Yuvaraj, and M. V. Kartikeyan, "Polarization insensitive reflectarray for OAM beam generation over octave bandwidth for 5G applications," AEU - International Journal of Electronics and Communications, Vol. 170, 154775, Oct. 2023.

24. Zhang, Junwei, Guoxuan Zhu, Jie Liu, Xiong Wu, Jiangbo Zhu, Cheng Du, Wenyong Luo, Yujie Chen, and Siyuan Yu, "Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining," Optics Express, Vol. 26, No. 4, 4243-4257, 2018.
doi:10.1364/OE.26.004243

25. Drysdale, Timothy D., Ben Allen, Chris Stevens, Simon J. Berry, Francis C. Smith, and Justin Coon, "How orbital angular momentum modes are boosting the performance of radio links," IET Microwaves, Antennas & Propagation, Vol. 12, No. 10, 1625-1632, 2018.
doi:10.1049/iet-map.2017.0293

26. Yao, Eric, Sonja Franke-Arnold, Johannes Courtial, Stephen Barnett, and Miles Padgett, "Fourier relationship between angular position and optical orbital angular momentum," Optics Express, Vol. 14, No. 20, 9071-9076, Oct. 2006.
doi:10.1364/OE.14.009071

27. Moustafa, Lina, Raphael Gillard, Federico Peris, Renaud Loison, Herve Legay, and Etienne Girard, "The phoenix cell: A new reflectarray cell with large bandwidth and rebirth capabilities," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 1, 71-74, 2011.
doi:10.1109/LAWP.2011.2108633

28. Schejbal, Vladimír and Jan Hönig, "Holographic method of near-field antenna measurements," 1980 10th European Microwave Conference, 167-171, 1980.

29. Rioult, Jean, Samuel Delgrande, Nicolas Bremard, Gregoire Copin, and Virginie Deniau, "Autonomous electromagnetic mapping system in augmented reality," 2019 International Symposium on Electromagnetic Compatibility (EMC EUROPE 2019), 138-143, Barcelona, Spain, Sep. 2019.
doi:10.1109/emceurope.2019.8872055