Vol. 119
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-02
Machine Learning Assisted Multi-Objective Planar Antenna Array Synthesis for Interference Mitigation in Next Generation Wireless Systems
By
Progress In Electromagnetics Research M, Vol. 119, 129-142, 2023
Abstract
The exponential increase of data traffic in next generation wireless communication attracts optimized design of antenna arrays (AAs) to be deployed in RANs. The traditional antenna array synthesis techniques have become exhaustive leading to the introduction of machine learning assisted new binary optimization algorithm. In this paper, three specific AA features are given particular attention: peak sidelobe level (PSLL), first null beam width (FNBW), and broad sector null in interference directions. These contrast each other, and a multi-objective new binary cat swarm optimization (MO-NBCSO) with a novel mutation probability is developed to derive the best-compromised solutions among them. The computational complexity is approximated as O(MN2) (here, M and N represent the number of objectives and population size, respectively). Hence, a 20×20 planar antenna array is considered for synthesis and pareto fronts are generated alongside state-of-the-art MO algorithms. A fuzzy-based decision approach is introduced to choose the best trade-off solutions. A detailed comparative performance study is carried out by the two-performance metrics, namely, I-metric and S-metric. Numerical results illustrate that MO-NBCSO is a better candidate to produce the best antenna arrays in terms of array characteristics over other algorithms.
Citation
Sahiti Vankayalapati, and Lakshman Pappula, "Machine Learning Assisted Multi-Objective Planar Antenna Array Synthesis for Interference Mitigation in Next Generation Wireless Systems," Progress In Electromagnetics Research M, Vol. 119, 129-142, 2023.
doi:10.2528/PIERM23081903
References

1. Lv, Y., F. Cao, X. Feng, and H. Li, "Improved binary particle swarm optimization and its application to beamforming of planar antenna arrays," Progress In Electromagnetics Research C, Vol. 114, 217-231, 2021.
doi:10.2528/PIERC21062002

2. Pappula, L. and D. Ghosh, "Aynthesis of thinned planar antenna array using multiobjective normal mutated binary cat swarm optimization," Applied Computational Intelligence and Soft Computing, Vol. 2016, Article ID 4102156, 2016.
doi:10.1155/2016/4102156

3. Chen, W., Q. Wu, C. Yu, H. Wang, and W. Hong, "Multibranch machine learning-assisted optimization and its application to antenna design," IEEE Trans. Antennas Propag., Vol. 70, No. 7, 4985-4996, 2022.
doi:10.1109/TAP.2022.3179597

4. Akinsolu, M. O., K. K. Mistry, B. Liu, P. I. Lazaridis, and P. Excell, "Machine learning-assisted antenna design optimization: A review and the state-of-the-art," 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020.

5. Lecci, M., P. Testolina, M. Rebato, A. Testolin, and M. Zorzi, "Machine learning-aided design of thinned antenna arrays for optimized network level performance," 14th Eur. Conf. Antennas Propagation, EuCAP 2020, 2020.

6. El Misilmani, H. M., T. Naous, and S. K. Al Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 10, 2020.

7. Baumgartner, P., T. Bauernfeind, O. Biro, et al. "Multi-objective optimization of Yagi-Uda antenna applying enhanced firefly algorithm with adaptive cost function," IEEE Trans. Magn., Vol. 54, No. 3, 2018.
doi:10.1109/TMAG.2017.2764319

8. Koziel, S. and A. Bekasiewicz, "Pareto-ranking bisection algorithm for expedited multiobjective optimization of antenna structures," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1488-1491, 2017.
doi:10.1109/LAWP.2016.2646842

9. Ram, G., D. Mandal, R. Kar, and S. P. Ghoshal, "Cat swarm optimization as applied to time-modulated concentric circular antenna array: Analysis and comparison with other stochastic optimization methods," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 4180-4183, 2015.
doi:10.1109/TAP.2015.2444439

10. Ahmed, A. M., T. A. Rashid, and S. A. M. Saeed, "Cat swarm optimization algorithm: A survey and performance evaluation," Comput. Intell. Neurosci., Vol. 2020, 2020.

11. Bhargav, A. and N. Gupta, "Multiobjective genetic optimization of nonuniform linear array with low sidelobes and beamwidth," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1547-1549, 2013.
doi:10.1109/LAWP.2013.2292573

12. Pappula, L. and D. Ghosh, "Linear antenna array synthesis using cat swarm optimization," AEU --- Int. J. Electron. Commun., Vol. 68, No. 6, 540-549, 2014.
doi:10.1016/j.aeue.2013.12.012

13. Bianchi, D., S. Genovesi, and A. Monorchio, "Constrained pareto optimization of wide band and steerable concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3195-3204, 2012.
doi:10.1109/TAP.2012.2196909

14. Pal, S., "Optimal synthesis of linear antenna arrays with multi-objective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010.
doi:10.2528/PIERB10022609

15. Pappula, L. and D. Ghosh, "Aynthesis of aperiodic linear antenna array using multi-objective cat swarm optimization," 2015 Int. Conf. Microwave, Opt. Commun. Eng. ICMOCE 2015, 231-234, 2016.

16. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., Vol. 6, No. 2, 182-197, 2002.
doi:10.1109/4235.996017

17. Vankayalapati, S., L. Pappula, and D. Ghosh, "Element thinning using discrete cat swarm optimization for 5G/6G applications," Progress In Electromagnetics Research B, Vol. 101, 119-135, 2023.
doi:10.2528/PIERB23051702

18. Pradhan, P. M. and G. Panda, "Pareto optimization of cognitive radio parameters using multiobjective evolutionary algorithms and fuzzy decision making," Swarm Evol. Comput., Vol. 7, 7-20, 2012.
doi:10.1016/j.swevo.2012.07.001

19. Nebro, A. J., E. Alba, G. Molina, F. Chicano, F. Luna, and J. J. Durillo, "Optimal antenna placement using a new multi-objective CHC algorithm," Proc. GECCO 2007 Genet. Evol. Comput. Conf., 876-883, 2007.

20. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

21. Sharafi, Y., M. A. Khanesar, and M. Teshnehlab, "Discrete binary cat swarm optimization algorithm," 2013 3rd IEEE Int. Conf. Comput. Control Commun. IC4 2013, 1-6, 2013.

22. Schott, J. R., "Fault tolerant design using single and multicriteria genetic algorithm optimization,", Massachusetts Institute of Technology, 1995.

23. Eckart, Z. and T. Lothar, "SPEA: Multiobjective evolutionary algorithms: A comparative case study," IEEE Trans. Evol. Comput., Vol. 3, No. 4, 257-271, 1999.
doi:10.1109/4235.797969

24. Pradhan, P. M. and G. Panda, "Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making," Ad Hoc Networks, Vol. 10, No. 6, 1134-1145, 2012.
doi:10.1016/j.adhoc.2012.03.001