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Machine Learning Assisted Multi-Objective Planar Antenna Array
Synthesis for Interference Mitigation in Next Generation

Wireless Systems

Sahiti Vankayalapati* and Lakshman Pappula

Abstract—The exponential increase of data traffic in next generation wireless communication attracts
optimized design of antenna arrays (AAs) to be deployed in RANs. The traditional antenna array
synthesis techniques have become exhaustive leading to the introduction of machine learning assisted
new binary optimization algorithm. In this paper, three specific AA features are given particular
attention: peak sidelobe level (PSLL), first null beam width (FNBW), and broad sector null in
interference directions. These contrast each other, and a multi-objective new binary cat swarm
optimization (MO-NBCSO) with a novel mutation probability is developed to derive the best-
compromised solutions among them. The computational complexity is approximated as O(MN2) (here,
M and N represent the number of objectives and population size, respectively). Hence, a 20×20 planar
antenna array is considered for synthesis and pare to fronts are generated alongside state-of-the-art MO
algorithms. A fuzzy-based decision approach is introduced to choose the best trade-off solutions. A
detailed comparative performance study is carried out by the two-performance metrics, namely, I-metric
and S-metric. Numerical results illustrate that MO-NBCSO is a better candidate to produce the best
antenna arrays in terms of array characteristics over other algorithms.

1. INTRODUCTION

High gain antennas arrays with beamforming, null forming capability are instrumental in 5G/6G
deployment scenarios for the RANs to meet the new demands of the end users. The wireless data
traffic has expanded significantly in the past five years due to huge upload and download of data for
different use cases and newly evolving applications. Requirements of the end users continue to increase
exponentially, setting high demands on RANs to provide greater coverage, better throughput and higher
capacity. The peak data rates of 6G are shifting towards terabits per second (Tbps). Thus, we require
large antenna arrays [1] (AAs) with advanced beamforming techniques at the base stations in RANs.
Large AAs are wide apertured and formed by large number of antenna elements. The synthesis of these
arrays is mechanically complex and is not cost effective. So aperiodic array synthesis can be realized by
altering the positions of the array elements using thinning technique. A thinned antenna array is one
that has a reduced number of array elements in comparison with an array that is equally spaced and
has multiple advantages [2]. Despite its superiority, finding the best possible combinational switch ON
and OFF states of elements in large AAs to induce aperiodicity is cumbersome.

The increased use of radio energy in the data transmission and reception process has polluted the
free space radiation environment to a more significant extent. So, to avoid unwanted interference null
synthesis with significant null depth should be performed. Though they are dependent, the reduction of
the SLL and the null depth are individually significant in the synthesis process. Also, tactical thinning
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suppresses the peak sidelobe level (PSLL), but it significantly affects the shape of the principal lobe
called first null beam width (FNBW). AAs should be capable of producing radiation patterns with
low PSLL while maintaining a narrow FNBW, null placement in interfering directions to increase the
efficiency of communication thereby enhancing the data rates. A significant increase in the performance
of the above parameters cannot be observed without sacrificing the other. So, developing an objective
function that will force the synthesis process to find feasible solutions by satisfying all the above concerns
is essential. To meet all the goals, many researchers have proposed multi-objective (MO) optimization
through machine learning [3–8] assisted algorithms as single objective algorithms fail to address the
above. MO approaches offer the designer various possible solutions on the pareto-optimal front. One
can arrive at the optimal solution by trading off a set of optimal solutions derived from the conflicting
objectives. Dominance and Pareto-optimality are two fundamental parameters that drive the multi-
objective solutions towards optima.

A binary MO optimization algorithm with exhaustive search needs to be developed, to explore
the feasible solutions among a large pool of solutions and perform thinned array synthesis. Thinning
is devised as a binary variable optimization technique where the solutions are encoded into binary
strings. The swarm-based intelligence algorithms have been a breakthrough in recent years for various
engineering applications. These are modeled by observing the natural behavior of different species.
Among these, the real-valued cat swarm optimization (CSO) [9, 10] is popular and has shown its potential
in solving various engineering problems [11–14]. It is formulated by mimicking the natural demeanor
of the cat. The successful adoption of real-valued CSO in current research fueled the development of
a new MO new binary version of CSO (MO-NBCSO). A few works in literature indicate the synthesis
of a MO thinned linear array [11, 14, 15] but not planar antenna array (PAA). Most papers focus on
single-objective thinned PAA synthesis problems in the literature. A little work has been carried out in
multi-objective synthesis as of now. The major contributions in this work.

(i) The new binary version of MO-CSO, named MO-NBCSO is developed and applied to synthesize
thinned PAA to control the shape of the radiation pattern.

(ii) A new mutation probability with a gaussian mutated tangent function is introduced in MO-NBCSO.

(iii) MO thinned PAA synthesis has been carried out in all ϕ planes.

(iv) Sector null in all ϕ planes has been introduced as one of the objectives.

(v) A fuzzy decision-making strategy has been introduced to AA synthesis to choose the best-
compromised solution.

(vi) Performance metrics have been used to estimate the quality of the pareto optimal solutions produced
by MO-NBCSO and competing binary optimization techniques.

2. MULTI-OBJECTIVE NEW BINARY CAT SWARM OPTIMIZATION
(MO-NBCSO)

NBCSO is a novel algorithm that mimics a continuous version of CSO. The significant difference being
the position vector is constructed using binary digits instead of real values. The main objective of
NBCSO is to explain the notion of the adaptive nature of the cat to trace its prey and link its behavior
to binary nature. To make our algorithm capable of solving multi-objective problems, the concept of
non-dominated sorting [16] principle is used and named MO-NBCSO. Here the cat operates in two
modes the seeking and tracing modes.

A mathematical model is formulated to represent both modes in NBCSO as follows. Let us consider
a D-dimensional solution space, and the position of ith cat is represented by Xi,d = (Xi1, Xi2, . . . , XiD),
and velocity by Vi,d = (Vi1, Vi2, . . . , ViD), here d = 1 to D which indicates the dimension. Evaluate the
fitness of each cat for all the M objectives and rank the cats based on non-dominance [16]. An external
archive is used to store the non-dominated solutions. Rank-based pareto fronts will be produced based
on non-dominance. The cats are distributed into modes depending on the value specified by the mixture
ratio (MR).
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2.1. Seeking Mode (SM)

The cats always stay resting but are alert in observing the surrounding environment. If the cat makes
a move for the next position, then it makes a prolonged move while observing the surroundings. The
formulation of this nature and a few essential parameters of SM are discussed below.

i Seeking memory Pool (SMP): It indicates the count of cat copies to be produced.

ii Counts of dimension to change (CDC): The count of mutating dimensions.

iii Mutation Probability (MP): The probability of occurrence of binary mutation is indicated by MP.
CDC is taken as a reference to mutate the selected dimensions corresponding to the value specified
by MP. This parameter is introduced in NBCSO to replace the seeking range of selected dimension
parameter from the traditional CSO operating on a real coding.

The steps involved in SM are given below:

1) Create k copies of the ith cat; here, SMP = k.

2) The mutation process is applied on (k−1) copies of the ith cat among the available k copies. Based
on the value of CDC and MP, each dimension (binary value) of the ith cat is to be mutated. The

mutation probability of the parent cat in each dimension is represented by MP (Xk
i,d).
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where k = 1, . . . , k − 1 and d = 1, . . . , D. Xk
i,d represents the position of kth copy of the ith cat

in the dth dimension. The symbol Dk
i,d indicates the spread distance generated by the standard

gaussian number, and the mutation control parameter (Z) is a constant. The gaussian mutation
number initializes the slight movement of the cat in positive and negative directions. This move
authorizes more minor mutations in the parent’s neighborhood. It leads to a more organized search
around the cat position and makes the search capabilities of NBCSO more promising. The mutation
probability has the range [0, 1] by limiting the sigmoid transformation maps. The mutation bit is
represented by the equation below, which is obtained after calculating the rn value in the range of
[0, 1].
The ith cat is updated using the below equation.
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The cat’s natural behavior is mathematically modeled, and the justification and flow of the
mechanism are depicted below. In SM, the cat displacement is significantly less as it observes
the environment around it. The mathematical equation should create a scope where the position
updation is much less. It can be done when the mutation rate is less. To facilitate this, the
mathematical equation is modeled as in Equation (1). The rate of mutation is directly related to
the mutation probability. The gaussian mutation number with the proper value of Z in the tangent
function allows lower mutation probability values over larger values. The mutation probability for
the various values of Z is depicted in Fig. 1. The value of Z = 6 yields the best-synthesized arrays,
and the respective numerical illustrations are discussed in Section 6. The mutation happens if at
least one bit in the string is updated. The displacement of the cat will be large if two or more
bits among the string are updated. Thus, Equations (1), (2), and (3) are modeled to allow the
cat to explore the search space more systematically around the original position by limiting larger
displacements. Equations (2) and (3) are formulated to derive the characteristics of the cat into
binary strings from the value of MP.

3) Evaluate the cats’ fitness value for all the M objectives.
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Figure 1. MP versus spread distance around the cat position for the various values of Z.

2.2. Tracing Mode (TM)

TM is another sub-model where the cats are not resting but trace the targets by spending a lot of
energy. The change in the position of the cat is mathematically modeled in this mode and the process
remains the same as in [17].

After completing the SM and TM evolutionary processes, the updated combined SM and TM cats
undergo the non-dominating sorting along with the cats in the external archive. The MO-NBCSO
evolutionary process is continued until the maximum iteration count is reached. The pseudo-code of
MO-NBCSO is summarized in algorithm 1 from lines 1 to 24.

2.3. Fuzzy Decision Making

When a pareto front produces many solutions at its center, it becomes cumbersome to derive solutions
that give equal weight age to each considered objective; providing a solution with high precision is
difficult for any decision-making technique. There is a certain amount of fuzziness in every objective.
In such a scenario, fuzzy decision-making can use to arrive at a compromised solution [18]. The amount
of fuzziness is derived from the membership functions. The membership function of the ith function of
the jth objective for a pareto optimal front is given by the below equation.

µj
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µj
i indicates the efficiency with which the jth nondominated solution can satisfy the objective function.

When N nondominated solutions are present, the below equation gives the efficiency of achieving each
non-dominated solution.
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Here M is the total number of objectives, and the decision maker can accept a compromised solution

with the µj
i value with maximum.
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2.4. Computational Complexity of MO-NBCSO

The computational complexity is approximated based on the evolutionary process of MO-NBCSO as
outlined in algorithm 1 and a few assumptions are made. As in practice, the least case of the loops is
considered because it significantly affects the estimation of computational time. The effect of the size
of D on computational complexity is ignored as it is a small number compared to the size of N and A.
Also, the lines having constant complexities are ignored.

The computational complexity for line 3 is O(MN) as it computes the fitness values of all the
population for M objectives. Line 4 has constant computational complexity O(1) as it initializes A
with a null set. The non-dominated sorting for the solutions of initialized cats is computed in line 5,
and the corresponding complexity is represented as O(MN2) [16]. In line 7, Ss and St number of cats
will participate in SM and TM evolutionary process based on MR, and the respective computational
complexity is represented as O(N). The SM process is depicted in lines 8 to 15. In this process, a total
of Ss (SMP-1) cats will undergo a mutation process according to CDC and Equations (1) to (3). The
fitness of these mutated cats for M objectives will be calculated. The corresponding computational
complexity of lines 8 to 15 is represented as O(MSs (SMP-1)). In lines 16 to 20, the computational
complexity for the updated St cats and computing their fitness values for M objectives in the TM
process is represented as O(MSt). The population, including the parent cats and updated mutated
cats, is sorted in line 21, and the resulting computational complexity is O(MN2). The maximum
input value of the MO-NBCSO evolutionary process is observed as N . Hence, considering all the steps
involved in MO-NBCSO, the least case of computational complexity is approximated as O(MN2). It is
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the same as the computational complexity of NSGA-II [16] and MO-BCSO [2] with the non-dominating
sorting mechanism.

3. CHARACTERISTICS OF A PLANAR ARRAY

The planar array [17], which is symmetric about the x-axis and y-axis, is constructed by a geometry of
2Q× 2R elements.

AF (I, θφ) = 4

R∑
r=1

Q∑
q=1

Irq · cos [π · (r − 0.5) · U ] cos [π · (q − 0.5) · V ] (6)

where U = sin(θ) cos(ϕ), V = sin (θ) sin(ϕ), ϕ(0 ≤ ϕ ≤ π) is the angle in the elevation plane, and Irq
represents the amplitude excitation of the (rq) elements witch ON (with 1) and OFF (with 0). The
elements of the planar array as placed at 0.5λ from each other.

4. PROBLEM FORMULATION FOR MULTI-OBJECTIVE SYNTHESIS

The effect of minimization of PSLL in planar antenna array synthesis has been observed and discussed
below after a detailed survey of work in the literature. The general 3-Dimensional radiation pattern of
a uniformly illuminated 20× 20 planar array in Fig. 2 shows that high sidelobe levels exist in principle
planes (ϕ = 0◦ & 90◦). Quite often, researchers exercise their algorithms on reducing the SLLs only in
the principal planes to project the effectiveness of the proposed algorithm. But, if the PSLL in ϕ = 0◦

and 90◦ planes is reduced, then proportionately, the SLLs in other planes gradually increase. It does
not abide by the proper flow of the synthesis mechanism. Instead, PSLL should be controlled in all
ϕ planes. Only then is the algorithm said to be effective in finding the optimal values for the PAA
synthesis. The objective functions in this section have been designed with the aim to synthesize a PAA
having a radiation pattern with minimum PSLL and null sector in the desired range with narrow FNBW.
These objectives contradict each other; therefore, a multi-objective trade-off mechanism is utilized to
draw the best trade-off solutions.

Figure 2. 3-Dimensional radiation pattern of uniformly illuminated 20× 20 planar antenna array.
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4.1. Realization of Objective 1

The first fitness function is formulated to minimize the peak sidelobe level in the entire ϕ-plane.

f1 =

(∣∣∣∣ AF (θ, ϕ)

AF (θ, ϕ)max

∣∣∣∣)∣∣∣∣
θ∈ sidelobe region on the entireϕ-plane

(7)

Here AF (θ, ϕ)max is the maximum value of the main beam, and f1 is limited to the region between θ
and ϕ excluding the main beam. In other words, f1 is limited to the sidelobe region.

4.2. Realization of Objective 2

The objective function is formulated to obtain a sector null in a predefined angular region in the entire
ϕ-plane.

f2 =

 k∑
i=j

AF (θi)

∣∣∣∣∣∣
For all ϕ planes

(8)

here j and k indicate the start and end limits of the azimuth angle for the null sector in the sidelobe
region.

4.3. Realization of Objective 3

The original array’s FNBW characteristic must be maintained during the synthesis process in the entire
ϕ-plane. The fitness function to achieve this is formulated as

f3 = max (θfni : i = 1, 2, . . . ϕi) (9)

where θfni is the position of the first null in the ith plane.

5. THINNED PLANAR ANTENNA ARRAY SYNTHESIS USING MO-NBCSO

In this section, a large thinned PAA having size 20 × 20 (400 elements) is synthesized. MO-NBCSO
along with traditional MO binary genetic algorithm (MO-BGA) [19], MO particle swarm optimization
(MO-BPSO) [20], and MO binary cat swarm optimization (MO-BCSO) [21] are used to produce the
best possible pareto-optimal solutions between the objectives. Algorithms have been used to perform
thinning by finding suitable combinations of 1’s and 0’s. Two test cases have been considered for

Table 1. Parameter composition of MO-NBCSO, MO-BCSO, MO-PSO, and MO-BGA.

Algorithm Parameter with value

MO-NBCSO

SMP = 3; CDC = 80%; MR = 0.8; Z = 6

Inertia weight (ω): a linear decrease from 0.9 to 0.2

Acceleration coefficient (C) = 2; Random

number (r) = generated between 0 and 1

MO-BCSO
SMP = 3; CDC = 20%; MR= 0.8; PMO= 0.2

ωr same as NBCSO

MO-BPSO

(archive-based

non-dominance)

Size of the archive = 100; C = 2ω

a linear decrease from 0.9 to 0.4

MO-BGA

(non-dominating)

Simulated binary cross-over distribution

index = 20; Pool size = 50; Tour size = 2

Polynomial mutation distribution index = 20
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simulation to demonstrate the performance of the proposed method. The initial parameter setup for all
the algorithms is given in Table 1. Sensitivity analysis has been carried out to select the best parametric
values of MO-NBCSO to suit this application. All the algorithms are executed for 50 runs. The quality
of the best-compromised pareto optimal solution has been measured with two performance metrics,
S [22] and I [23, 24]. In general, the MO optimization is twofold: To drive the algorithm towards
finding the solutions that are as close to the pareto front as possible; To find the solutions having the
maximum diversity on the nondominated front. The significance of the first objective is to guide the
solutions toward the pareto optimal region. Once a significant pareto optimal front is achieved, the
second goal aids in identifying the best solutions having great diversity on the pareto front. The best
values are marked in bold in the tables. All the simulations have been carried out using MATLAB on
windows operating laptop with processor i3-8100T CPU at 3.10GHz, and 4GB RAM. The number of
function evaluations is considered as 20,000. The mean performances in terms of performance metrics
have been recorded.

5.1. Case 1: Trade-Off between PSLL, FNBW and Null Depth at θ = (25◦ to 29◦) in All
ϕ Planes (ϕ=0◦ to 90◦)

In this case, MO-NBCSO and other algorithms are applied to generate the best pareto-optimal solutions
by trading off PSLL, FNBW and null depth at θ = (25◦ to 29◦) with sector width of 5◦ in the entire
ϕ-plane. The best pareto fronts produced in one of the 50 runs by MO-NBCSO, MO-BCSO, MO-BPSO,
and MO-BGA are shown in Fig. 3(a). The fuzzy logic-based decision maker defined by Equations (4)
and (5) is used to choose the best compromised pareto-optimal solution among the solutions obtained
by each of the algorithms and the same is shown in Fig. 3(b). The respective MO-NBCSO optimized AA
input configuration (ON and OFF status) is given in Table 3. The thinning percentage of the antenna

(a) (b)

Figure 3. (a) Pareto fronts obtained by a trade-off between PSLL, FNBW, and Null depth. (b) Best
trade-off solution set visualization attained using fuzzy decision maker.

Table 2. Compromised solutions obtained based on fuzzy logic.

Objectives MO-NBCSO MO-BCSO MO-BPSO MO-BGA

f1 PSLL (in dB) −20.23 −19.24 −18.57 −18.47

f2 Null depth (in dB) −38.13 −33.16 −36.14 −32.47

f3 FNBW (in deg) 16◦ 16◦ 16◦ 180◦
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(a) (b)

Figure 4. (a) The 3-Dimensional radiation pattern. (b) 2-Dimensional radiation pattern in all planes
with a null depth of −40 dB in the angular region of 25◦ to 29◦.

Table 3. Elements ON and OFF status for MO-NBCSO arrays for Case I and Case II.

Case I Case II

1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1

0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0

1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0

0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0

1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0

1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0

elements using MO-NBCSO is 37% which indicates 148 elements were switched OFF out of 400 total
array elements. The thinning rate for MO-BCSO is 37%; MO-BPSO is 38%; and MO-BGA is 42%.

The radiation characteristics for the best-compromised solutions obtained by all algorithms are
given in Table 2. Even the suppression of small amounts of PSLL in the entire ϕ-plane is considered
a good achievement during comparison among algorithms. Figs. 4(a), 4(b) show the 3-Dimensional,
2-Dimensional far-filed radiation patterns of the MO-NBCSO respectively. The 2-Dimension far-filed
radiation pattern is provided from θ = 0◦ to 90◦ due to symmetry of planar structure along the X
and Y direction gives better visualization of null depth and FNBW. MO-NBCSO produced PSLL of
−20.23 dB with a sector null of depth −38.13 dB in the angular sector region of θ = 25◦ to 29◦ in the
entire ϕ-plane whichis evident from Fig. 4(b). MO-NBCSO has 1 dB, 1.66 dB, and 1.76 dB lower PSLL
compared to MO-BCSO, MO-BPSO, and MO-BGA. All the algorithms produce similar FNBW except
MO-BGA. The null sector is formed in the whole radiation pattern-like ring with a sector width of 5◦ as
seen in Fig. 4(a). Sector null depths were observed as −37.73 dB, −33.16 dB, −36.14 dB, and −32.47 dB
for MO-NBCSO, MO-BCSO, MO-BPSO, and MO-BGA algorithms, respectively.

Tables 4 and 5 depict the qualitative S and I performance metrics for all the chosen algorithms.
MO-NBCSO produces lower values of S-metric, compared to the other three algorithms. A low value
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Table 4. Statistical results for S-metrics for case-I.

Performance metric MO-NBCSO MO-BCSO MO-BPSO MO-BGA

S

Best 0.9065 1.5232 0.9933 1.0704

Worst 1.0137 1.7489 1.2194 1.4528

Mean 0.9463 1.6012 1.1059 1.3172

Standard Deviation 0.0355 0.0809 0.0939 0.1218

Table 5. Statistical results for I-metrics for case-I.

Performance metric MO-NBCSO MO-BCSO MO-BPSO MO-BGA

I

Best 1690.43 1494.54 1431.27 1354.21

Worst 1510.33 902.12 846.76 842.32

Mean 1616.63 1185.52 1075.45 1022.72

Standard Deviation 64.12 165.75 176.02 131.77

indicates a uniform spread of solutions in the pareto front. MO-NBCSO produced high values compared
to other three algorithms for I-metric analysis, which portrays MO-NBCSO ability to exhibit higher
diversity among optimal solutions on the pareto front. The mean value obtained with MO-NBCSO is
more than the values produced with other algorithms. MO-NBCSO has a significantly smaller standard
deviation and indicates stability in achieving a similar solution in every run for both the metrics. MO-
NBCSO yields better S and I metric values over MO-BCSO, MO-BPSO, and MO-BGA.

5.1.1. Sensitivity Analysis

The sensitivity analysis is carried out to demonstrate the selection of the appropriate value of Z.
Simulations have been carried out on different Z values as specified in Fig. 1. At the same time, all
other parameters of MO-NBCSO are kept constant, as mentioned in Table 1. The I-metric values were
observed as 1264.41, 1444.32, 1588.57, 1616.63, 1375.45, and 1386.24 for the Z values 1, 3, 5, 6, 7,
and 9, respectively. The simulated values of the S-metric for the Z same values were observed as 1.11,
1.21, 1.19, 1.01, 1.03, and 1.15. It’s decided that the best choice of the Z value for the MO-NBCSO
algorithm is 6. The sensitivity analysis is performed for other parameters and the best tuned values are
as mentioned in Table 1 are selected for the synthesis process. It is clear from all the tables and figures
that MO-NBCSO showed better performance over other algorithms. Hence, MO-NBCSO is a better
candidate for multi-objective synthesis problems.

5.2. Case II: Trade-off between PSLL, FNBW, and Null Depth at θ = (32◦ to 35◦) in
selective ϕ planes (at ϕ = 35◦, 36◦, 37◦)

In this case, a null sector in a few desired planes (ϕ = 35◦ to 37◦) has been considered for synthesis
along with suppression of PSLL in all ϕ planes and maintaining narrow FNBW. To achieve this the
objective function 2 is reformulated as

f2 =

 k∑
i=j

AF (θi)

∣∣∣∣∣∣
For ϕ=350 to 370 planes

(10)

All the algorithms have been applied to obtain the best possible pareto fronts. The best pareto fronts
obtained by MO-NBCSO and competing algorithms among the 50 runs are shown in Fig. 5(a). The
best compromised pareto optimal solutions using the fuzzy logic-based decision maker from each of the
simulated algorithms are shown in Fig. 5(b). The respective antenna performance metrics of each of the
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(a) (b)

Figure 5. (a) Pareto optimal obtained for case II. (b) The best trade-off solution set visualization
attained using fuzzy decision maker.

Table 6. Compromised solutions obtained based on fuzzy logic in case of desired planes of (ϕ = 35◦,
36◦, 37◦).

Objectives MO-NBCSO MO-BCSO MO-BPSO MO-BGA

f1 PSLL (in dB) −20.5666 −18.9396 −18.6302 −18.1022

f2-Null depth (in dB) −52.1051 −50.9271 −51.197 −51.0869

f3 FNBW (in deg) 16◦ 16◦ 16◦ 160

compromised solutions are listed in Table 6. MO-NBCSO produced PSLL of −20.56 dB, whereas MO-
BCSO, MO-BPSO, and MO-BGA produced −18.9396 dB, −18.6302 dB, and −18.1022 dB, respectively.
MO-NBCSO achieved 1.63 dB, 1.93 dB, and 2.46 dB low PSLL compared to MO-BCSO. MO-NBCSO
achieved a significant reduction in PSLL compared to other algorithms. As discussed in case 1, it is
worth mentioning that obtaining a low PSLL value in all the ϕ planes that satisfy other criteria is a
complex task for the algorithms.

The array structure (ON and OFF status) for the MO-NBCSO solution with 37% thinning is
provided in Table 3. The percentage of thinning for MO-BCSO was 37%, MO-BPSO was 36%, and
MO-BGA was 35%. The 3-D dimension radiation pattern concerning this array structure is shown in
Fig. 6(a). Fig. 6(b) represents the 2-Dimensional plot of far filed radiation pattern to analyze the depth
of the sector nulls at θ = (32◦ to 35◦) on (ϕ = 35◦ to 37◦) planes. Deep sector nulls with a null depth
of −52.10 dB can be observed clearly, as highlighted in Figs. 6(a) and (b). It has been observed that
−52.10 dB of the maximum null level has been obtained by MO-NBCSO in the null sector angular range
while maintaining low PSLL and narrow FNBW. All the algorithms exhibit a narrow FNBW of 16◦.
Hence, it can be observed from a detailed discussion that MO-NBCSO outperforms the other three
algorithms in achieving low PSLL and deep null depths with maintaining narrow FNBW.

Deep null depths in the given null sector angular region were observed in case 2 over case 1 due to
the selection of ϕ planes. All ϕ planes were considered in case1, whereas selected planes were considered
in case 2 for null placements. MO-NBCSO and the other three algorithms were assessed using the S and
I-performance metrics to comment on the quality of the obtained solutions. The statistical process of S
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(a) (b)

Figure 6. (a) 3-Dimensional radiation pattern. (b) 2-Dimensional far-field obtained by MO-NBCSO
compromised antenna array in selective ϕ (at 35◦, 36◦, 37◦) plane.

Table 7. Statistical results for S-metrics for case-II.

Performance metric MO-NBCSO MO-BCSO MO-BPSO MO-BGA

S

Best 0.8977 1.5222 0.7999 1.3265

Worst 0.9947 1.7389 1.9993 1.8755

Mean 0.9334 1.6144 1.7227 1.5892

Standard Deviation 0.0301 0.0753 0.3327 0.1921

Table 8. Statistical results for I-metrics for case-II.

Performance metric MO-NBCSO MO-BCSO MO-BPSO MO-BGA

I

Best 2172.4 2028.5 2040.3 1749.2

Worst 1989.3 1754.4 1658.4 1528.6

Mean 2056.2 1850.9 1841.1 1634.6

Standard Deviation 74.8 96.1 146.1 80.1

and I metrics for all the algorithms are provided in Tables 7 and 8, respectively. MO-NBCSO produced
a high mean value of I-metric compared to the other three algorithms and exhibited high diversity
of pareto-optimal solutions. MO-NBCSO delivers a low standard deviation value and exhibits more
stability compared to the three different algorithms. It can be seen from Table 7 that the mean value of
S-metric for MO-NBCSO is 0.9947, whereas the mean value obtained for MO-BCSO, MO-BPSO, and
MO-BGA are 1.73, 1.99, and 1.87, respectively. A low value of S-metric for MO-NBCSO indicates that
it produces a uniform spread of solutions on the pareto front.
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6. CONCLUSION

A new machine learning assisted multi-objective binary optimization technique called MO-NBCSO has
been developed for performing thinned PAA synthesis. A new mutation probability with a gaussian
mutated tangent function is introduced in the algorithm to allow cat to explore the search space
more systematically thereby improves the optimization procedure. A sensitivity analysis on important
parameters of algorithm is carried out to select suitable parametric values. The performance of MO-
NBCSO is compared with MO-BCSO, MO-BPSO, and MO-BGA to demonstrate the effectiveness of
the proposed algorithm. A fuzzy-based decision-making strategy has been utilized to select the best
compromised solutions. Also, I and S performance metrics were used to weigh the quality of the pareto-
optimal solutions over the pareto front. A precise analysis of the performance metrics is done to assess
the quality of acquired solutions. MO-NBCSO exhibited better diversity and uniform spread of pareto
optimal solutions over the pareto front. It offers greater flexibility over other algorithms by producing
optimal synthesized arrays. Experimental results indicate that the algorithm has produced good pareto
optimal solutions by trading off PSLL, narrow FNBW, and deep sector null in a large 20× 20 PAA in
selected ϕ planes and entire ϕ-plane. The synthesized Large PAAs installed at the base stations can
greatly enhance the performance of radio access networks due to sector null placement incorporated
in the design of the AA. This will aid in better management of jammers and other interfering devices
which increases the overall performance of 6G communication.
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