Vol. 113
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-11-01
A Scalable PSP RF Model for 0.11 um MOSFETs
By
Progress In Electromagnetics Research Letters, Vol. 113, 43-51, 2023
Abstract
An accurate, efficient and scalable SPICE model is essential for modern integrated circuits design, especially for radio frequency (RF) circuit design. A PSP based scalable RF model is extracted and verified in 0.11 μm CMOS manufacturing process. The S parameter measurement system and open-short de-embedding technique is applied. The macro-model equivalent subcircuit and parameters extraction strategy are discussed. The extracted model can match the de-embedded S parameters data well. By combining the model parameters' dependencies on each geometry quantity, the scalable expression of parameters with all geometry quantities included can be obtained. This work can be a reference for the RF MOSFETs modeling and RF circuit design.
Citation
Xiaonian Liu, and Yansen Liu, "A Scalable PSP RF Model for 0.11 um MOSFETs ," Progress In Electromagnetics Research Letters, Vol. 113, 43-51, 2023.
doi:10.2528/PIERL23081405
References

1. Laurance, W. N., "SPICE2: A computer program to simulate semiconductor circuits," Memorandum No. UCB/ERL M520, 1975.

2. Quarles, T. L., "Spice3 version 3C1 users guide," Memorandum No. UCB/ERL M89/46, 1989.

3. Morabito, F. C., "Independent component analysis and feature extraction techniques for NDT data," Materials Evaluation, Vol. 58, No. 1, 85-92, 2000.

4. Koolen, M. C. A. M., J. A. M. Geelen, and M. P. J. G. Versleijen, "An improved de-embedding technique for on-wafer high-frequency characterization," Proceedings of the 1991 Bipolar Circuits and Technology Meeting, 188-191, Minneapolis, MN, USA, 1991.

5. Chen, C.-H. and M. J. Deen, "A general noise and S-parameter deembedding procedure for onwafer high-frequency noise measurements of MOSFETs," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 5, 1004-1005, May 2001.
doi:10.1109/22.920164

5. Cho, H. and D. E. Burk, "A three-step method for the de-embedding of high-frequency S-parameter measurements," IEEE Transactions on Electron Devices, Vol. 38, No. 6, 1371-1375, June 1991.
doi:10.1109/16.81628

7. Gildenblat, G., X. Li, W. Wu, H. Wang, A. Jha, R. van Langevelde, G. D. J. Smit, A. J. Scholten, and D. B. M. Klaassen, "PSP: An advanced surface-potential-based MOSFET model for circuit simulation," IEEE Transactions on Electron Devices, Vol. 53, No. 9, September 2006.
doi:10.1109/TED.2005.881006

8. Scholten, A. J., G. D. J. Smit, B. A. De Vries, L. F. Tiemeijer, J. A. Croon, D. B. M. Klaassen, R. van Langevelde, X. Li, and W. Wu, "(Invited) The new CMC standard compact MOS model PSP: Advantages for RF applications," 2008 IEEE Radio Frequency Integrated Circuits Symposium, 247-250, Atlanta, GA, USA, 2008.

9. Chauhan, Y. S., S. Venugopalan, M.-A. Chalkiadaki, M. A. Ul Karim, H. Agarwal, S. Khandelwal, N. Paydavosi, J. P. Duarte, C. C. Enz, A. M. Niknejad, and C. Hu, "BSIM6: Analog and RF compact model for bulk MOSFET," IEEE Transactions on Electron Devices, Vol. 61, No. 2, 234-244, February 2014.
doi:10.1109/TED.2013.2283084

10. Enz, C. C. and E. A. Vittoz, Charge-based MOS Transistor Modeling: The EKV Model for Low-power and RF IC Design, John Wiley & Sons, Ltd, West Sussex, England, 2006.

11. Lovelace, D., J. Costa, and N. Camilleri, "Extracting small-signal model parameters of silicon MOSFET transistors," 1994 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 865-868, 1994.