Vol. 121
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-19
Modification of Fast Inverse Laplace Transform for Transient Response Analyses
By
Progress In Electromagnetics Research M, Vol. 121, 73-81, 2023
Abstract
The fast inverse Laplace transform (FILT) proposed by Hosono is recently applied to various transient response problems in electromagnetics. The frequency-domain methods have been the mainstream of electromagnetic simulation for many years, and a lot of knowledge has been accumulated. The FILT makes it possible to utilize frequency-domain techniques to transient analyses, and it is expected to provide reliable transient response analyses. Since the evaluation points of the image function in the conventional FILT depend on the observation time, the scope of application is sometimes limited when evaluation of the image function takes a relatively long computation time. This paper modifies the FILT so that the evaluation points are independent of the observation time, and the number of image function evaluations is reduced.
Citation
Koki Watanabe, "Modification of Fast Inverse Laplace Transform for Transient Response Analyses," Progress In Electromagnetics Research M, Vol. 121, 73-81, 2023.
doi:10.2528/PIERM23080902
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech house, Norwood, 2005.

2. Oberhettinger, F. and L. Badii, Tables of Laplace Transforms, Springer-Verlag, Berlin, 1973.

3. Cohen, A. M., Numerical Methods for Laplace Transform Inversion, Springer, New York, 2010.

4. Hosono, Toshio, "Numerical inversion of Laplace Transform and some applications to wave optics," Radio Science, Vol. 16, No. 6, 1015-1019, 1981.

5. Hosono, H., "Transient responses of electromagnetic waves scattered by a circular cylinder with longitudinal slots - The case of back scattering by a cylinder with a slot in the forward direction," IEICE Transactions on Electronics, Vol. E74-C, No. 9, 2864-2869, 1991.

6. Kishimoto, Seiya, Tatsuichiro Okada, Shinichiro Ohnuki, Yoshito Ashizawa, and Katsuji Nakagawa, "Efficient analysis of electromagnetic fields for designing nanoscale antennas by using a boundary integral equation method with fast inverse Laplace Transform," Progress In Electromagnetics Research, Vol. 146, 155-165, 2014.

7. Ohnuki, S., Y. Kitaoka, and T. Takeuchi, "Time-Domain solver for 3D electromagnetic problems using the method of moments and the fast inverse Laplace Transform," IEICE Transactions on Electronics, Vol. E99-C, No. 7, 797-800, 2016.

8. Ozaki, R. and T. Yamasaki, "Analysis of pulse responses from conducting strips with dispersion medium sandwiched air layer," IEICE Electronics Express, Vol. 15, No. 6, 1-6, 2018.

9. Ohnuki, S., "Time-domain analysis of electromagnetic waves using fast inverse Laplace Transform," Trans. IEICE Japan, Vol. J103-C, No. 4, 203-210, 2020.

10. Kishimoto, Seiya, Shohei Nishino, and Shinichiro Ohnuki, "Novel computational technique for time-dependent heat transfer analysis using fast inverse Laplace Transform," Progress In Electromagnetics Research M, Vol. 99, 45-55, 2021.

11. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1972.

12. Hosono, H. and T. Hosono, "Highly anomalous propagation of pseudo-Gaussian pulse," IEICE transactions on electronics, Vol. E90-C, No. 2, 224-230, 2007.

13. Yamasaki, T., K. Isono, and T. Hinata, "Analysis of electromagnetic fields in inhomogeneous media by Fourier series expansion methods — The case of a dielectric constant mixed a positive and negative regions," IEICE transactions on electronics, Vol. E88-C, No. 12, 2216-2222, 2005.