Vol. 120
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-07
Analytical Neuro-Space Mapping Technology for Heterojunction Bipolar Transistors Modeling
By
Progress In Electromagnetics Research M, Vol. 120, 167-178, 2023
Abstract
An analytical modeling method for heterojunction bipolar transistor (HBT) is proposed in this paper. The new neuro-space mapping (Neuro-SM) model applied to DC, small signals and large signals simultaneously consists of two mapping networks, which provide the additional degrees of freedom.Sensitivity analysis expressions are derived to accelerate the training process. When the non-linearity of device is high, or the response of the model is complex, the weights in the proposed model are automatically adjusted to address the accuracy limitations. The proposed modeling method is verified by measured HBT examples in DC, smallsignals and largesignals Harmonic Balance (HB) simulation. The modeling experiments of the measured HBT demonstrate that the errors of the proposed Neuro-SM model are less than 2% by matching combined DC, small-signal S-parameters and large-signal HB data, which are less than the errors of the traditional Neuro-SM model and the coarse model. The proposed analytic Neuro-SM model fits the response of the fine model well.
Citation
Shuxia Yan, Yuxing Li, Chenglin Li, Fengqi Qian, Xu Wang, and Wenyuan Liu, "Analytical Neuro-Space Mapping Technology for Heterojunction Bipolar Transistors Modeling," Progress In Electromagnetics Research M, Vol. 120, 167-178, 2023.
doi:10.2528/PIERM23080706
References

1. Squartecchia, M., T. K. Johansen, J. Y. Dupuy, et al. "E-band indium phosphide double heterojunction bipolar transistor monolithic microwave-integrated circuit power amplifier based on stacked transistors," Microwave and Optical Technology Letters, Vol. 61, No. 2, 550-555, 2019.
doi:10.1002/mop.31558

2. Boulgheb, A., M. Lakhdara, and S. Latreche, "Improvement of the self-heating performance of an advanced SiGe HBT transistor through the Peltier effect," IEEE Transactions on Electron Devices, Vol. 68, No. 2, 479-484, 2021.
doi:10.1109/TED.2020.3044869

3. Tanaka, S., "A study on AM-AM/PM characteristics of a single-stage HBT power amplifier," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E104-A, No. 2, 484-491, 2021.
doi:10.1587/transfun.2020GCP0010

4. Mohammadi, F. and A. Sadrossadat, "Modeling and simulation techniques for microwave components," Microwave Systems and Applications, 2017.

5. Zhang, H., G. Niu, M. B. Willemsen, and A. J. Scholten, "Improved compact modeling of SiGe HBT linearity with MEXTRAM," IEEE Transactions on Electron Devices, Vol. 68, No. 6, 2597-2603, 2021.
doi:10.1109/TED.2021.3070530

6. Karimi, G., R. Banitalebi, and S. B. Sedaghat, "Simulation of SiGe:C HBTs using neural network and adaptive neuro-fuzzy inference system for RF applications," International Journal of Electronics, Vol. 100, No. 7, 959-975, 2013.
doi:10.1080/00207217.2012.727353

7. Rudolph, M., "Compact HBT modeling: status and challenges," IEEE MTT-S International Microwave Symposium, 1206-1209, Anaheim, CA, USA, 2010.

8. Johansen, T. K., M. Rudolph, T. Jensen, et al. "Small- and large-signal modeling of InP HBTs in transferred-substrate technology," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 3–4, 243-251, 2014.
doi:10.1017/S1759078714000051

9. Zhang, A. and J. Gao, "An improved small signal model of InP HBT for millimeter-wave applications," Microwave and Optical Technology Letters, Vol. 63, No. 8, 2160-2164, 2021.
doi:10.1002/mop.32876

10. Zhang, J., M. Liu, J. Wang, and K. Xu, "An analytic method for parameter extraction of InP HBTs small-signal model," Circuit World, Vol. 48, No. 4, 393-400, 2021.
doi:10.1108/CW-06-2020-0099

11. Cheng, L., H. Lu, M. Xia, et al. "An augmented small-signal model of InP HBT with its analytical based parameter extraction technique," Microelectronics Journal, Vol. 121, 105366, 2022.
doi:10.1016/j.mejo.2022.105366

12. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.

13. Feng, F., W. Na, J. Jin, et al. "Artificial neural networks for microwave computer-aided design: The state of the art," IEEE Transactions on Microwave Theory and Techniques, Vol. 11, No. 70, 4597-4619, 2022.
doi:10.1109/TMTT.2022.3197751

14. Zlatica, D. M., G. Crupi, A. Caddemi, et al. "A review on the artificial neural network applications for small-signal modeling of microwave FETs," International Journal of Numerical Modelling Electronic Networks Devices and Fields, Vol. 33, No. 3, e2668, 2020.
doi:10.1002/jnm.2668

15. Feng, F., W. Na, J. Jin, et al. "ANNs for fast parameterized EM modeling: the state of the art in machine learning for design automation of passive microwave structures," IEEE Microwave Magazine, Vol. 22, No. 10, 37-50, 2021.
doi:10.1109/MMM.2021.3095990

16. Zhang, A. and J. Gao, "InP HBT small signal modeling based on artificial neural network for millimeter-wave application," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 1-3, Hangzhou, China, 2020.

17. Zhu, L., J. Zhao, Z. Li, et al. "A general neuro-space mapping technique for microwave device modeling," EURASIP Journal on Wireless Communications and Networking, Vol. 2018, No. 1, 37, 2018.
doi:10.1186/s13638-018-1034-4

18. Zhang, W., F. Feng, V.-M.-R. Gongal-Reddy, et al. "Space Mapping approach to electromagnetic centric multiphysics parametric modeling of microwave components," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3169-3185, 2018.
doi:10.1109/TMTT.2018.2832120

19. Yan, S., Y. Zhang, W. Liu, et al. "A novel electromagnetic centric multiphysics parametric modeling approach using neuro-space mapping for microwave passive components," Photonics, Vol. 9, No. 12, 960, 2022.
doi:10.3390/photonics9120960

20. Zhao, Z., L. Zhang, F. Feng, et al. "Space mapping technique using decomposed mappings for GaN HEMT modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 8, 3318-3341, 2020.
doi:10.1109/TMTT.2020.3004622

21. Zhang, L., J. J. Xu, M. C. E. Yagoub, et al. "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2752-2767, 2005.
doi:10.1109/TMTT.2005.854190

22. Yan, S., S. Zhang, Y. Zhang, et al. "An accurate neuro-space mapping method for heterojunction bipolar transistor modeling," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 1-4, Hangzhou, China, 2020.

23. Yan, S., Q. Cheng, H. Wu, and Q. J. Zhang, "Neuro-space mapping for modeling heterojunction bipolar transistor," Transactions of Tianjin University, Vol. 21, No. 1, 90-94, 2015.
doi:10.1007/s12209-015-2493-x

24. Wu, H. F., Q. F. Cheng, S. X. Yan, et al. "Transistor model building for a microwave power heterojunction bipolar transistor," IEEE Microwave Magazine, Vol. 16, No. 2, 85-92, 2015.
doi:10.1109/MMM.2014.2377588

25. Zhang, Q. J., "Neuro modeler plus,", Dept. Electron., Carleton Univ., Ottawa, ON., Canada, 2008.