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Abstract—An analytical modeling method for heterojunction bipolar transistor (HBT) is proposed
in this paper. The new neuro-space mapping (Neuro-SM) model applied to DC, small signals and
large signals simultaneously consists of two mapping networks, which provide the additional degrees of
freedom. Sensitivity analysis expressions are derived to accelerate the training process. When the non-
linearity of device is high, or the response of the model is complex, the weights in the proposed model are
automatically adjusted to address the accuracy limitations. The proposed modeling method is verified
by measured HBT examples in DC, small signals and large signals Harmonic Balance (HB) simulation.
The modeling experiments of the measured HBT demonstrate that the errors of the proposed Neuro-SM
model are less than 2% by matching combined DC, small-signal S-parameters and large-signal HB data,
which are less than the errors of the traditional Neuro-SM model and the coarse model. The proposed
analytic Neuro-SM model fits the response of the fine model well.

1. INTRODUCTION

Nowadays, heterojunction bipolar transistors (HBTs) with high-performance are widely used in large-
scale integrated circuits [1–3]. In high performance and reliability circuit/system design, accurate HBTs
models play an important role [4, 5]. Efficient HBT models greatly improve circuit performance and
shorten the design cycle. With the continuous improvement of monolithic circuit integration, researches
on new modeling methods improving the accuracy of the existing models are needed.

Many researchers made contributions to HBT modeling methods [6–10]. Some existing traditional
modeling techniques such as equivalent circuit modeling match HBT data by manually adjusting the
parameters, which are heavily based on trial-and-error process [11]. For the high accuracy design
requirements, these models often fail to be used directly due to the lack of freedom. The physical
modeling approaches which are widely used in new devices modeling become essential to achieve design
accuracy [12]. However, physical simulation requires more information about material parameters and
device geometric structure. The challenge on expensive computational cost must be considered in more
complex HBT modeling. Artificial neural networks (ANNs) are considered to be an effective alternative
to traditional modeling technology, which learn the characteristic without the internal information of
devices [13–15]. ANN was used in InP HBT small signals modeling [16].

Recently, neuro-space mapping (Neuro-SM) with the advantages of space mapping and neural
network was applied to transistor modeling [17, 18]. Neuro-SM could represent the nonlinear relationship
between the existing model and the modeling data by the mapping networks. The trained Neuro-SM
model is embedded in circuit simulation modeling easily [19, 20]. The Neuro-SM technique in [21]
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was used in HBT modeling. Input mapping networks are used into the model to adjust the current
and voltage signals, making the Neuro-SM model match the DC data of device accurately. In order
to increase the complexity and accuracy of the existing models, several improvements on Neuro-SM
modeling method are subsequently studied [22]. The Neuro-SM formulations for small-signal simulation
are derived to minimize the difference between the existing model and new HBT data [23]. The
simulation results show that the Neuro-SM model with appropriate weights could present the HBT
device. The circuit-based Neuro-SM model in [24] is developed for large-signal Harmonic Balance (HB)
simulation. The perturbation sensitivity analysis in training makes modeling process time-consuming.
In addition, when higher accuracy requirements of modeling are needed, or worse existing models are
available, existing mapping structures are insufficient.

In this paper, an accurate analytical Neuro-SM model combining the input and output mapping
neural networks is proposed. Sensitivity formulations of the new model are derived. Simultaneously,
a new training method is proposed to automatically adjust the weights in neural networks. By this
approach, the analytical Neuro-SM model is more accurately and efficiently applied to the DC, small-
signal and large-signal simulation. The modeling experiments of the measured HBT demonstrate that
the new modeling technology has high accuracy and efficiency.

2. SENSITIVITY ANALYSIS OF THE PROPOSED NEURO-SM TECHNOLOGY

In this paper, the coarse model represents the available equivalent circuit models, while the fine model
represents the data from actual measurements or software simulators. The proposed Neuro-SM modeling
method is to build the relationship between an accurate fine model and an imprecise coarse model by
two mapping networks. Let Ib and Vc represent the HBT input signals. Let Vb and Ic represent the HBT
output signals. The subscripts c and f , which represent the coarse model and the fine model, are added
in the variables. The circuit structure of the HBT model is shown in Figure 1. The input signals of the
fine model are tuned through mapping networks instead of acting directly on the coarse model. During
the proposed modeling process, sensitivity analysis is required to provide gradient information. Gradient
information can effectively improve the training efficiency and accuracy. Brute-force perturbation which
reduces training speed will be performed if effective gradient information is unavailable. In order to
establish an efficient modeling method, the sensitivity of the Neural-SM model is analyzed in this paper.
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Figure 1. The circuit structure of the new Neuro-SM model.

2.1. Sensitivity Analysis of the DC Characteristic

If the unknown relationship between the coarse and fine models is highly nonlinear, it is impossible to
overcome the gap between them only by changing the variables’ values in the coarse model. In order
to improve the existing model, two highly flexible mapping networks with sensitivity formulations are
added to the coarse model. Figure 2 shows the DC signal flowchart of the proposed Neuro-SM model.
The input signals [Ibf , Vcf ]

T are mapped to [Ibc, Vcc]
T by the input network fANN . The output signals
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[Vbc, Icc]
T are mapped to [Vbf , Icf ]

T by the output network hANN . Both fANN and hANN can be
implemented using multi-layer perceptrons, where w1 and w2 represent the weights in the input and
output networks, respectively.

The sensitivity analysis of the model in Figure 2 is derived to find the optimal weight value of the
model more quickly and efficiently. We define w1,i as the ith component in the weight w1 of the network
fANN and w2,j as the jth component in the weight w2 of the network hANN . Let Nh and Nk represent
the maximum number of hidden neurons in the networks fANN and hANN , respectively. The sensitivity
formulations of the DC characteristic are proposed as

∂ (Vbf , Icf )

∂w1,i
=

(
∂ (Vbf , Icf )

∂ (Vbc,, Icc)

)T

·
(
∂ (Vbc, Icc)

∂ (Ibc, Vcc)

)T

· ∂ (Ibc, Vcc)

∂w1,i

=

(
∂hTANN (Ibf , Vcf , Vbc,, Icc,w2)

∂ (Vbc, Icc)

)T

· Gc ·
∂fANN (Ibf , Vcf ,w1)

∂w1,i
(1)

and
∂ (Vbf , Icf )

∂w2,j
=

∂hANN (Ibf,, Vcf , Vbc, Icc,w2)

∂w2,j
(2)

where Gc = (∂(Vbc, Icc)/∂(Ibc, Vcc))
T is the DC transconductance matrix of the coarse model.

(∂hTANN (Ibf , Vcf , Vbc, Icc,w2)
/
∂(Vbc, Icc))

T is the first-order partial derivative of the output with respect
to the input of the network hANN . ∂fANN (Ibf , Vcf ,w1)/∂w1,i and ∂hANN (Ibf , Vcf , Vbc, Icc,w2)/∂w2,j

are the first-order partial derivatives of fANN and hANN with respect to the weights w1,i and w2,j .
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Figure 2. Flowchart of the DC signals in the proposed model.

2.2. Sensitivity Analysis of the Small Signal Characteristic

The small signal characteristics of HBT are expressed by the H -parameter. The small signal model
for HBT includes the conversion between S -parameter and H -parameter. The H -matrix of the fine
model Hf is calculated by the H -matrix Hc and several matrices representing the mapping network
relationship. Thus, the analytical H -parameter expression of the proposed model is derived as

Hf =


∂Vbf

∂Ibf

∂Vbf

∂Vcf

∂Icf
∂Ibf

∂Icf
∂Vcf


∣∣∣∣∣∣(Vbf ,Icf)=hANN

(
Ibf ,Vcf ,Vbc,Icc|(Ibc,Vcc)=fANN(Ibf ,Vcf ,w1)

,w2

)
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=
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T

∣∣∣∣∣∣(Vbc,Icc)=(Vbc,Icc)
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· Hc
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·

(
∂fT
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+
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T

(3)

where H f is evaluated at the bias point (Vbf , Icf ). The derivatives of fANN and hANN at the bias point
(Ibf , Vcf ) are calculated by the adjoint neural network method. H c is a matrix which contains all the
internal calculation relationships of the coarse model.

The analytical small-signal expression in Equation (3) includes the influence of the mapping
networks fANN and hANN , making the response of the Neuro-SM model consistent with the fine model.
To ensure model consistency, the same weight values w1 and w2 are used in the mapping networks. The
small signal sensitivity formulations of the mapping networks fANN and hANN with respect to weight
w1,i and w2,j are proposed as
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and

∂Hf

∂w2,j
=

∂2hTANN (Ibf , Vcf , Vbc, Icc,w2)

∂ (Vbc, Icc)
T ∂w2,j

∣∣∣∣∣∣(Vbc,Icc)=(Vbc,Icc)

∣∣∣∣(Ibc,Vcc)=fANN(Ibf ,Vcf ,w1)

T

· Hc

∣∣∣(Ibc,Vcc)=fANN(Ibf ,Vcf ,w1) ·

(
∂fT

ANN (Ibf , Vcf ,w1)

∂ (Ibf , Vcf )
T

)T

(5)

respectively. In Equation (4), (∂2hTANN (Ibf , Vcf , Vbc, Icc,w2)
/
∂(Vbc, Icc)

T∂(Vbc, Icc))
T represents

the second-order partial derivative of the mapping network hANN , which is the derivative
of the Jacobian matrix (∂hTANN (Ibf , Vcf , Vbc, Icc,w2)

/
∂(Vbc, Icc)

T )T with respect to (Vbc, Icc).
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T represents the second-order partial derivative of the network
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fANN , which is the derivative of the matrix (∂fT
ANN (Ibf , Vcf ,w1)

/
∂(Ibf , Vcf )

T )T with respect to weight

w1,i. (∂fT
ANN (Ibf , Vcf ,w1)

/
∂(Ibf , Vcf )

T )T represents the first-order partial derivative of the network

fANN , which is the derivative of ∂fT
ANN (Ibf , Vcf ,w1) with respect to ∂(Ibf , Vcf )

T . In Equation (11),

(∂2hTANN (Ibf , Vcf , Vbc, Icc,w2)
/
∂(Vbc, Icc)

T∂w2,j)
T represents the second-order partial derivative of the

network hANN , which is the derivative of the matrix (∂hTANN (Ibf , Vcf , Vbc, Icc,w2)
/
∂(Vbc, Icc)

T )T

parameters with respect to weight w2,j .

2.3. Sensitivity Analysis of the Large Signal Characteristic

The large-signal output of the Neuro-SM model is derived within the environment of HB simulation.
The time domain signals are used in the mapping networks and the coarse model, while the frequency
domain signals are needed in the fine model. Inverse fast Fourier transform and fast Fourier transform
are introduced into the large signal model. In the fine model, the harmonic current and voltage signals
are defined as Icf (ωk) and Vbf (ωk). In the coarse model, the harmonic current and voltage signals are
defined as Icc(ωk) and Vbc(ωk). The subscript k represents the harmonic frequency index. The value of
k ranges from 0 to the maximum harmonics number NH . The large-signal flowchart of the new model
is shown in Figure 3.
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Figure 3. Flowchart of the large signals in the proposed model.

In the proposed large-signal model, F () is used to represent the fast Fourier transform calculation.
The Fourier coefficient of the kth harmonic in the nth sampling could be represented by WNT

(n, k) =

e−j2πnk/NT , where the subscript n is the sampling time point, and NT is the maximum time point. The
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sensitivity formulations of the mapping networks fANN and hANN are proposed as

∂ (Vbf (ωk) , Icf (ωk))

∂w1,i

=
1

NT

NT−1∑
n=0

∂hANN

(
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)
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· Gc ·
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∂w1,i
·WNT

(n, k) (6)

and
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=
1
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(
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(7)

where Gc = (∂(Vbc(tn), Icc(tn))/∂(Ibc(tn), Vcc(tn)))
T represents the large-signal transconductance matrix

at time tn, which is calculated at the bias point (Ibc(tn), Vcc(tn)).

2.4. The Proposed Training Method for the Analytical Neuro-SM Model

In this paper, the proposed training method utilizes the input and output neural networks to narrow the
gap between the characteristics of the modeling device and the coarse model, making the proposed model
represent the device data accurately. The training is mainly done with the data from the simulators or
measured by device equipment. Training error is represented as

E (w1,w2) =
1

2

NVcf∑
q=1

NIbf∑
p=1

∥∥∥A(D (IBp, VCq,w1,w2)−Dq
Fp

)∥∥∥2

+
1

2

NVcf∑
q=1

NIbf∑
p=1

Nfreq∑
l=1

∥∥∥B (S (IBp, VCq, ωk,w1,w2)− Sl
Fpq

)∥∥∥2

+
1

2

NH∑
k=1

NVcf∑
q=1

NIbf∑
p=1

∥C (H (IBp, VCq, ωk,w1,w2)−HFpq (ωk))∥2 (8)

where D(·), S(·) and H(·) indicate the DC, small-signal and the large-signal output of the Neuro-SM
model, respectively. DF , SF and HF (·) indicate the DC, the small-signal and the large-signal output
of the fine model. In order to find the optimal value easily, we add three scaling variables into the
error formula, i.e., A, B, and C. The subscripts p(p = 1, 2, . . . , NIbf ) and q(q = 1, 2, . . . , NVcf

) represent
the pth and qth input of the training data, respectively. NIbf and NVcf

are the maximum numbers of
the bias data. The subscript l(l = 0, 1, 2, . . . , Nfreq) and k(k = 0, 1, 2, . . . , NH) represent the lth input
frequency and the kth harmonic frequency. Nfreq is the maximum frequency of the small-signal data,
and NH is the maximum harmonic of the large-signal data.

Figure 4 shows the proposed training flowchart of the model with two mapping networks. The
mapping networks fANN and hANN are trained to minimize the training error as shown in Equation (8).
The errors are expressed as the gap between the characteristics of the modeling device and the coarse
model. The training process is summarized as follows: Unit mapping networks, in which the output is
equal to the input, are constructed to prevent the model accuracy from dropping. Then, the weights
w1 and w2 in fANN and hANN are optimized with the sensitivity analysis equations, respectively. The
criterion is that the training error is less than the threshold. If the training error in Equation (8) meets
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the accuracy requirements, the optimization process is over. After training, the proposed Neuro-SM
model can be tested by the test data, which include the DC, small-signal S -parameter, and large-signal
HB data.

3. EXAMPLES

In this section, the modeling method with the sensitivity analysis is used to develop an accurate model
for the InGaP HBT [23]. The on-chip measurements data is used as the fine model, while the coarse
model is the Agilent HBT model. The Agilent HBT model could not match the measurements data
well, even after improving the characteristic as much as possible. We implement the new model in
NeuroModelerPlus [25]. The proposed Neuro-SM model with sensitivity analysis is trained and tested
with the on-chip measurements data.

The input unit mapping training was done at 4680 different bias points in the following range: Ibf
is from 10µA to 200µA while the step is 5µA, and Vcf is from 0.05V to 6V while the step is 0.05V.
The output unit mapping training was done at 5280 different bias points in the following range: Ibf is
from 5µA to 220µA while the step is 5µA, and Vcf is from 0.05V to 6V while the step is 0.05V. The
hidden neurons in the networks fANN and hANN are 40 and 50.

Table 1 shows the ranges of the training data and test data for modeling in the formal training. The
proposed Neuro-SM model is trained using DC data at 250 different bias points and small-signal data at
9 different bias points for 423 training iterations. When large-signal harmonic simulation is conducted,
the highest harmonic order is set as 5, while the first three harmonics are taken as the training data.

(a)
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(b)

Figure 4. The training flowchart of the proposed model. (a) DC and small-signal training process. (b)
Large-signal training process.

Table 1. Ranges of the training data and test data for modeling.

Simulation type Input variable Training data Test data

DC simulation
Ibf (mA) 0.02 : 0.04 : 0.18 0.04 : 0.04 : 0.16

Vcf (V) 0.05 : 0.1 : 4.95 0.1 : 0.1 : 4.9

S-parameter

simulation

Ibf (mA) 0.05 : 0.02 : 0.09 0.06 : 0.02 : 0.08

Vcf (V) 1.4 : 0.25 : 1.9 1.45 : 0.4 : 1.85

freq (GHz)
0.05 : 0.05 : 0.5; 0.6 : 0.1 : 1; 1.2 : 0.2 : 3;

3.25 : 0.25 : 4.5; 5 : 1 : 20

HB simulation

Ibf (mA) 0.06 : 0.03 : 0.09 0.07 : 0.01 : 0.08

Vcf (V) 1.4 : 0.4 : 1.8 1.5

RF power

(dBm)
−19 : 1 : 15 −19 : 1 : 15
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To verify the feasibility and accuracy of the proposed analytical Neuro-SM model, the traditional
Neuro-SM method mentioned in [21] is used for this example. In contrast to the traditional method that
incorporates neural networks only at the input, the proposed model adds networks at both the input
and output, which increases the degree of freedom and improves the accuracy of the model. Table 2
shows the error of the proposed Neuro-SM model, traditional Neuro-SM model, and coarse model by
matching combined DC, small-signal S-parameter, and large-signal harmonic data.

Table 2. Modeling results of the three models.

Model

type

DC

matching

S-parameter

matching

Large-signal

matching

Combined DC,

S-parameter,

large-signal matching

Coarse

model
2.1437% 9.5896% 9.7447% 22.7246%

Traditional

model
0.7443% 4.5174% 2.3416% 7.418%

Proposed

model
0.4772% 1.4236% 1.6947% 1.9261%

Figure 5 shows the output voltage Vbf and output current Icf of the coarse model, traditional
Neuro-SM model, proposed Neuro-SM model, and fine model in the DC simulation. There is a certain
gap between the coarse model and fine model. Even though the traditional Neuro-SM model and
proposed Neuro-SM model match the fine model well, the proposed analytical Neuro-SM model has
higher modeling accuracy than the existing models in detail.

(a) (b)

Figure 5. The DC results of the four models. (a) Output voltage characteristics. (b) Output current
characteristics.

The S -parameter results of the fine model, proposed Neuro-SM model, traditional Neuro-SM model,
and coarse model are shown in Figure 6. The proposed analytical Neuro-SM model fits the fine model
well, while the traditional Neuro-SM model has a large gap with the fine model, especially in the real
and imaginary parts of the S12. The proposed analytical Neuro-SM model can match the fine model
in both the curve trend and the details. It verifies that the new model has high accuracy and wide
application in small-signal S -parameter simulation.

Figure 7 shows the large-signal harmonic results of the coarse model, traditional Neuro-SM model,
proposed Neuro-SM model, and fine model. It can be seen from Figure 7 that the proposed analytical
Neuro-SM model fits the fine model well at the first three harmonics. As the power increases, the
response of the traditional Neuro-SM model cannot be consistent with that of the fine model. The
proposed analytic Neuro-SM model fits the response of the fine model within the training range.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The S -parameter results of the four models. (a) Real(S11). (b) Imag(S11). (c) Real(S12).
(d) Imag(S12). (e) Real(S21). (f) Imag(S21). (g) Real(S22). (h) Imag(S22).

(a) (b) (c)

Figure 7. The large-signal results of the four models. (a) Pout[1]. (b) Pout[2]. (c) Pout[3].

We can see from Figure 5, Figure 6, and Figure 7 that the accuracy of the traditional Neuro-SM
model is better than that of the coarse model. The input mapping network in the traditional Neuro-SM
model could change the weights to minimize the performance gap between the fine model and coarse
model. However, when the non-linearity of device is high, the traditional model can no longer meet the
accuracy requirements. The proposed analytical Neuro-SM model combining the coarse model and the
two networks greatly improves the model accuracy and matches the fine data well. The mapping network
hANN adding on the coarse model provides necessary degrees of freedom to improve the proposed model
accuracy.

In addition, the simpler sensitivity formulations greatly improve the efficiency of the training
process. The circuit-based Neuro-SM method with perturbation analysis in [22] is used as a comparison.
Table 3 shows the training CPU time, which confirms that the proposed training algorithm has better
efficiency. Circuit-based Neuro-SM is implemented by controlled sources, which introduces additional
variables and equations into circuit simulation to complicate the solution process. The proposed method
has high simulation efficiency without extra variables. In addition, sensitivity analysis provides gradient
information to speed up training process. The more data that is trained, the more significant the
efficiency advantages of the proposed model become.
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Table 3. Training time comparison of the two models.

Data Circuit-based model Proposed model

15 sets 20.1 s 3.2 s

35 sets 81.5 s 10.4 s

55 sets 112.9 s 14.6 s

4. CONCLUSIONS

In this paper, the analytical HBT modeling method applied to DC, small signals and large signals
simultaneously is proposed for the first time. Two mapping networks are used to minimize the gap
between the existing coarse model and fine HBT model. The analytical expressions combining the
coarse model and mapping networks are proposed to improve the accuracy of the Nuero-SM model.
The simpler sensitivity formulations greatly improve the efficiency of the training process. Compared
with the circuit-based Neuro-SM method, the proposed training algorithm can save about 87% of the
time cost with 55 sets of data. The measured HBT examples verify that the proposed modeling method
has better accuracy and efficiency than the existing modeling methods.
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