1. Duan, Xin, Xing Chen, Yonghong Zhou, Lin Zhou, and Shuji Hao, "Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1617-1621, 2018.
2. Shou, Y., Y. Feng, Y. Zhang, H. Chen, and H. Qian, "Deep learning approach based optical edge detection using ENZ layers," Progress In Electromagnetics Research, Vol. 175, 81-89, 2022.
3. Hu, Z., N. He, Y. Sun, Y. Jin, and S. He, "Wideband high-reflection chiral dielectric metasurface," Progress In Electromagnetics Research, Vol. 172, 51-60, 2021.
4. Huang, M., B. Zheng, T. Cai, X. Li, J. Liu, C. Qian, and H. Chen, "Machine–learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, No. 9, 2001-2010, 2022.
5. Lu, H., J. Zhao, B. Zhen, C. Qian, T. Cai, E. Li, and H. Chen, "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Vol. 14, No. 1, 3301, 2023.
6. Huang, H. F. and H. Huang, "Millimeter-wave wideband high efficiency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
7. Lu, H., B. Zheng, T. Cai, C. Qian, Y. Yang, Z. Wang, and H. Chen, "Frequency‐controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, 2021.
8. Hao, H., X. Ran, Y. Tang, S. Zheng, and W. Ruan, "A single-layer focusing metasurface based on induced magnetism," Progress In Electromagnetics Research, Vol. 172, 77-88, 2021.
9. Zheng, B., H. Lu, C. Qian, D. Ye, Y. Luo, and H. Chen, "Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks," Electromagnetic Science, Vol. 1, No. 2, 0020092, 2023.
10. Cai, T., B. Zheng, J. Lou, L. Shen, Y. Yang, S. Tang, E. Li, C. Qian, and H. Chen, "Experimental realization of a superdispersion-enabled ultrabroadband terahertz cloak," Advanced Materials, Vol. 34, No. 47, 2205053, 2022.
11. Tan, Q., B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, and H. Chen, "Broadband spin‐locked metasurface retroreflector," Advanced Science, Vol. 9, No. 20, 2201397, 2022.
12. Singh, V. K., A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, "Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite," Carbon, Vol. 50, No. 6, 2202-2208, 2012.
13. Li, L., R. Xi, H. Liu, and Z. Lv, "Broadband polarization-independent and low-profile optically transparent metamaterial absorber," Applied Physics Express, Vol. 11, No. 5, 052001, 2018.
14. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
15. Zhang, Y., Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, "Broadband and tunable high‐performance microwave absorption of an ultralight and highly compressible graphene foam," Advanced Materials, Vol. 27, No. 12, 2049-2053, 2015.
16. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, 1988.
17. Du Toit, L. J. , "The design of jauman absorbers," IEEE Antennas and Propagation Magazine, Vol. 36, No. 6, 17-25, 1994.
18. Jaggard, D. L., N. Engheta, and J. Liu, "Chiroshield: A Salisbury/Dallenbach shield alternative," Electronics Letters, Vol. 26, No. 17, 1332-1334, 1990.
19. Li, S. J., P. X. Wu, H. X. Xu, Y. L. Zhou, X. Y. Cao, J. F. Han, C. Zhang, H. H. Yang, and Z. Zhang, "Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects," Nanoscale Research Letters, Vol. 13, No. 1, 386, 2018.
20. Hu, X., G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, "Metamaterial absorber integrated microfluidic terahertz sensors," Laser & Photonics Reviews, Vol. 10, No. 6, 962-969, 2016.
21. Park, S. J., S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC Advances, Vol. 6, No. 73, 69381-69386, 2016.
22. Ge, J., Y. Zhang, H. Li, H. Dong, and L. Zhang, "Ultra-broadband, tunable, and transparent microwave meta-absorber using ITO and water substrate," Advanced Optical Materials, Vol. 11, No. 10, 2202873, 2023.
23. Rybin, M. V., D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, "Phase diagram for the transition from photonic crystals to dielectric metamaterials," Nature Communications, Vol. 6, No. 1, 10102, 2015.
24. Odit, M., P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, "Experimental demonstration of water based tunable metasurface," Applied Physics Letters, Vol. 109, No. 1, 011901, 2016.
25. Feng, M., X. Tian, J. Wang, M. Yin, S. Qu, and D. Li, "Broadband abnormal reflection based on a metal-backed gradient index liquid slab: An alternative to metasurfaces," Journal of Physics D: Applied Physics, Vol. 48, No. 24, 245501, 2015.
26. Tiwari, Priyanka and Surya Kumar Pathak, "Design and simulation of a water based polarization-insensitive and wide incidence dielectric metasurface absorber for X-, Ku- and K-band," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 692-695, 2021.
27. Tan, X., J. Chen, J. Li, and S. Yan, "Water-based metasurface with continuously tunable reflection amplitude," Optics Express, Vol. 30, No. 5, 6991-6998, 2022.
28. Kim, H. K., D. Lee, and S. Lim, "A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, No. 8, 1246, 2016.
29. Kim, H. K., D. Lee, and S. Lim, "Wideband-switchable metamaterial absorber using injected liquid metal," Scientific Reports, Vol. 6, No. 1, 31823, 2016.
30. Minovich, A., J. Farnell, D. N. Neshev, et al. "Liquid crystal based nonlinear fishnet metamaterials," Applied Physics Letters, Vol. 100, No. 12, 121113, 2012.
31. Andryieuski, A., S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, "Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials," Scientific Reports, Vol. 5, No. 1, 13535, 2015.
32. Yoo, Y. J., S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, "Metamaterial absorber for electromagnetic waves in periodic water droplets," Scientific Reports, Vol. 5, No. 1, 14018, 2015.
33. Song, Q., W. Zhang, P. C. Wu, et al. "Water‐resonator‐based metasurface: an ultrabroadband and near‐unity absorption," Advanced Optical Materials, Vol. 5, No. 8, 1601103, 2017.
34. Su, J., Y. Li, M. Qu, H. Yu, Q. Guo, and Z. Li, "A 3-D-printed ultrawideband and ultralow-scattering water-based metasurface," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 3, 2885-2890, 2023.
35. Chen, W., H. Liu, Y. Jia, Y. Liu, and X. Wang, "Ultra-wideband low-scattering metamaterial based on combination of water absorber and polarization rotation metasurface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 9, e23260, 2022.
36. Wen, J., Q. Ren, R. Peng, and Q. Zhao, "Multi-functional tunable ultra-broadband water-based metasurface absorber with high reconfigurability," Journal of Physics D: Applied Physics, Vol. 55, No. 28, 285103, 2022.
37. Shen, Y., J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, and S. Qu, "Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction," Scientific Reports, Vol. 8, No. 1, 4423, 2018.
38. Xie, J., W. Zhu, I. V. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, "Water metamaterial for ultra-broadband and wide-angle absorption," Optics Express, Vol. 26, No. 4, 5052-5059, 2018.
39. Huang, X., H. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, "Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime," Journal of Physics D: Applied Physics, Vol. 50, No. 38, 385304, 2017.
40. Li, L., J. Wen, Y. Wang, Y. Jin, Y. Wen, J. Sun, Q. Zhao, B. Li, and J. Zhou, "A transparent broadband all-dielectric water-based metamaterial absorber based on laser cutting," Physica Scripta, Vol. 98, No. 5, 055516, 2023.
41. Zhao, J., S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, "Broadband microwave absorption utilizing water-based metamaterial structures," Optics Express, Vol. 26, No. 7, 8522-8531, 2018.