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An Ultra-Wideband and Translucent Metasurface Absorber
Based on Water
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Abstract—Electromagnetic metasurface has become the focus of researchers in the field of
electromagnetic absorption in recent years because of its thin thickness, simple structure, and high
absorption rate. With high real and imaginary parts of the permittivity in the microwave frequency
regime, water plays a crucial role in absorbing materials. This work demonstrates a water-based
translucent metasurface with 5.2mm, which is fabricated by 3D printing. By changing the conductivity
of water, a metasurface with good absorption performance is obtained, which can realize ultra-wideband
absorption in 5.85–23.1GHz and 5.85–14.8GHz under the oblique incidence of 40◦. The metasurface
has the characteristics of thin thickness, wide-band absorption, and translucency.

1. INTRODUCTION

Electromagnetic (EM) absorptive materials have wide application prospects in EM energy harvesting [1],
detection [2–4], and focusing [5–8] due to their effective absorption of incident EM waves. EM absorptive
materials can not only provide solutions for stealth technology and EM compatibility [9–11], but also be
used to suppress EM radiation pollution and anti-microwave interference [12–15]. Metasurfaces formed
by subwavelength metal structures arranged on the substrate in a periodic or regular aperiodic manner
have great potential in applying metamaterial absorbers due to the high loss generated by resonant
structures. Classical EM absorptive materials such as Salisbury screen [16], Jauman absorbers [17], and
Dallenbach absorbers [18] have the disadvantages of large volume and narrow bandwidth. Because of
the high resonance dispersion of metal, it is challenging to achieve broadband absorption for monolayer
metamaterials. Broadband absorption can be realized by stacking multilayer structures and loading
lumped resistors [19], but they increase the thickness of the metamaterial. It remains a challenge to
achieve broadband absorption at the thin thickness of metamaterials.

Liquid can not only serve as the substrate of metamaterial, but also form a three-dimensional
structure surrounded by substrate, which can realize microwave absorption [20–24]. These
metamaterials that contain liquids are called liquid metamaterials. There are many types of liquid
in liquid metamaterials, including water [25–27], ethanol [28], liquid metals [29], liquid crystals [30],
etc. Water is widely used in liquid metamaterials because of its non-polluting, low cost, and easy
availability [31]. Due to the large imaginary part of the permittivity of water, the water-based
metamaterial is considered a good absorber in the microwave frequency regime [32–36]. Reference [37]
presents a water-substrate metasurface absorber with a metal fishbone structure, which can achieve
broadband absorption from 2.6GHz to 16.8GHz and has a thickness of 15mm. Reference [38] presents
an ultra-wideband metamaterial absorber with over 90% absorptivity from 12GHz to 29.6GHz, and its
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thickness is 5.8mm. In [39], a water-injected metamaterial absorber is presented, which can realize an
absorption over 90% in the range of 8.1–22.9GHz. Reference [40] presents a transparent water-based
metamaterial absorber with high absorption over 90% at 13.3–40GHz, and its thickness is 15mm. These
absorbers have the disadvantages of thick thickness and no absorption at low frequency regime.

In this work, water and salt solution of different concentrations was selected as absorbing materials,
and transparent photosensitive resin (Somos WaterClear Ultra 10122) was used to fix the water structure
and as a container. In the second section, the design of a translucent water-based metasurface is
presented, and the design process is introduced in detail. Then, the simulation results are given in
the third section. The structural parameters are optimized, and we discuss the simulation results.
In the fourth section, the experimental results are carried out, and the processing methods are
described. Finally, we conclude the salt solution concentration with the best absorption according
to the experimental results.

2. DESIGN OF TRANSLUCENT WATER-BASED METASURFACE

The water-resonator-based metasurface is illustrated in Fig. 1. The blue structure is water resonant
structure, and the yellow structure is substrate. It can be seen that the water resonance structure
consists of a bottom square ring and four cuboids. The design of the square ring is inspired by the metal
square ring metamaterial, whose strong resonance in the low frequency regime enables the metamaterial
to have strong absorption in the low frequency regime. The cuboid is placed above the square ring to
broaden the absorption bandwidth. In order to make the overall structure remain polarized independent,
four cuboids need to be placed above the square ring. Due to the fluidity of water, the water resonant
structure is surrounded by the yellow substrate, as shown in Figs. 1(b), 1(c) and 1(d). The resonant
peak can be changed to adjust the microwave absorption by adjusting the parameters of square rings

(a) (b)

(c) (d)

Figure 1. (a) Schematic of the translucent water-based metasurface. (b) Side view of the translucent
water-based metasurface. (c) Top view of part II. (d) Schematic of part II.
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and cuboids. Since the square ring and four cuboids are connected, the water resonance structure can
be filled by reserving one water inlet and one water outlet in the overall structure. The substrate is
Somos WaterClear Ultra 10122 (SWU10122), which has a relative permittivity of 2.8 in the microwave
frequency regime. SWU10122 is an optically transparent 3D printing material that produces colourless
parts that mimic the appearance of acrylic acid.

3. NUMERICAL ANALYSIS

As the water resonant structure of translucent water-based metasurface, the square ring and four
cuboids, which are surrounded by the substrate to form a designed fixed structure, can generate several
resonant frequencies. Due to the high real part of the permittivity of water, an EM resonance is excited
at certain frequencies in the water resonant structure designed by specific geometric parameters. In
addition, the high imaginary part of the permittivity of water in the microwave frequency range enables
the water resonant structure to carry out wideband absorption near the resonant frequency. CST
simulation software was used to simulate the cell structure. The permittivity of distilled water can be
described by the Debye model [41], which can be found in the material library in the CST software.
The simulation results are shown in Fig. 2 when the geometric parameters of translucent water-based
metasurface are finally determined to be W = 1.7mm, L = 2.1mm, H1 = 0.8mm, H2 = 2.8mm,
d = 0.8mm, p = 10mm. In addition, the thickness of all substrates is 0.8mm, and the total thickness
of the metasurface is 5.2mm. Considering that the cell structure is completely symmetric, it can be
concluded that the reflection of the incident of the polarized EM wave in the y-direction is the same as
x-direction.

(a) (b)

Figure 2. (a) Reflection of cell structure which consist of only water and consist of both substrate and
water. (b) Reflection of cell structure when the value of substrate loss tangent is 0, 0.025 and 0.05.

As shown in Fig. 2(a), there are three resonant frequencies in the frequency regime with reflection
less than −10 dB, which are fTE1 = fTM1 = 6.6GHz, fTE2 = fTM2 = 13GHz, and fTE3 = fTM3 =
21.5GHz. The power loss density of these six resonant frequencies is shown in Fig. 3. The resonant
frequencies fTE1 and fTM1 are contributed by the water square ring. The resonant frequencies fTE2

and fTM2 are mainly contributed by the lower half of the water cuboid, and the resonant frequencies
fTE3 and fTM3 are mainly contributed by the upper half of the water cuboid. The incident EM wave
has no power loss on the substrate, so it seems that the substrate has no effect in the metasurface. All
the substrate in Fig. 1(a) is replaced with water to find out the effect of the substrate on reflection.
The reflection of a metasurface consisting of only water is shown in Fig. 2(a). When the metasurface is
composed of only water, the reflection is almost 0 dB. That is, there is no absorption. Thus, the substrate
is not only to surround the water resonant structure, but also to make it form an impedance match
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with the air. Fig. 2(b) shows the effect of substrate loss tangent on the reflection of the metasurface.
The change of substrate loss tangent has little effect on the reflection of the metasurface. Therefore,
to improve the simulation speed, the power loss density in Fig. 3 is simulated under the condition of
tan δ = 0.

(a)

(b)

(c)

Figure 3. Power loss density at (a) 6.6GHz, (b) 13GHz and (c) 21.5GHz.
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Figure 4. (a) The fabricated translucent water-based metasurface and experimental antenna. (b) The
detachable top substrate. (c) Internal structure with removal of the top substrate.

4. RESULTS AND DISCUSSIONS

The translucent water-based metasurface, which is fabricated by 3D printing, consists of 18×18 elements
with 10mm period, and the total footprint of the absorbing metasurface is 180mm× 180mm, as shown
in Fig. 4. Fig. 1(a) shows that the water resonant structure is connected to the air, so a baffle with
0.5mm is added on the side of the metasurface to prevent water leakage. The top substrate of the
translucent water-based metasurface is detachable to inject water into the metasurface, as shown in
Fig. 4(b). When the water in the metasurface needs to be replaced, the top substrate is removed, and
the water is poured out and sucked dry, then the required liquid can be refilled.

With a detachable top substrate, water with different conductivities can be injected into the
metasurface. Three kinds of water with different conductivities are provided, and the conductivities
are 0, 2388µS/m, and 5377µS/m, respectively. Fig. 5(a) shows the reflection of the metasurface in
which water with three conductivities is injected. The resonant frequencies increase, and the reflection
decreases with the increase of the conductivity of the injected water. Because of the increase of water
conductivity, the absorption of water resonant structure to EM wave increases, and the broadband
absorption of resonant frequency will become worse. However, with the increase of water conductivity,
the lower bound of bandwidth does not increase with the increase of resonant frequency, while the upper
bound of the bandwidth increases. Therefore, we conclude that the higher the conductivity of water is,
the less reflection the metasurface is, which means the larger absorption.

In general, the EM wave does not incident vertically onto the metasurface, so the translucent water-
based metasurface needs to realize a wide incident angle absorption in a wide bandwidth. Figs. 5(b)–
(d) show the measured reflection spectra of the metasurface in which water with three conductivity is
injected under a wide incident angle. Since the fabricated metasurface is geometrically symmetric, the
measured results are independent of the polarization of the incident EM wave. In this paper, TE wave
is used for measurement. With the increase of oblique incident angle, the distance between low and high
resonant frequencies increases, and the reflection at high resonant frequency increases, which makes the
reflection peak at 8GHz increase and bandwidth narrow. However, the oblique incident angle has little
effect on the lower bound of the bandwidth, so the translucent water-based metasurface can operate at
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Figure 5. (a) Measured reflection spectra of the translucent water-based metasurface when the
conductivity of injected water is 0, 2388µS/m and 5377µS/m. Measured reflection spectra of the
translucent water-based metasurface under wide incident angle when the conductivity of injected water
is (b) 0, (c) 2388µS/m and (d) 5377µS/m.

(a) (b)

Figure 6. Measured reflection spectra of the translucent water-based metasurface when the
conductivity of injected water is 5377µS/m under (a) vertically incidence and (b) oblique incidence.
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a wide incident angle when the conductivity of injected water is 5377 µS/m. Fig. 5(d) shows that the
upper bound of the bandwidth exceeds 18GHz when it is vertically incident. Thus, the reflection of the
metasurface between 18GHz and 40GHz is measured. Fig. 6 shows the measured reflection spectra of
the metasurface when the conductivity of injected water is 5377 µS/m. The reflection of the translucent
water-based metasurface is less than −10 dB with frequency from 5.85GHz to 23.1GHz. Meanwhile,
the low reflection and large bandwidth are also preserved when the oblique incident angle increases
from 0◦ to 40◦. Even if the incident angle is 40◦, the bandwidth of the metasurface is from 5.85GHz to
14.8GHz.

5. CONCLUSION

A translucent water-based metasurface is proposed in this work. Firstly, the effect of water conductivity
on the reflection of metasurface is studied. The experimental results are basically consistent with
the simulation ones, when the conductivity of injected water is 5377 µS/m. The absorption of the
translucent water-based metasurface is more than 90% with frequency from 5.85GHz to 23.1GHz. The
bandwidth of the translucent water-based metasurface is broad and the realize high absorption within
broad bandwidth with the incident angle from 0◦ to 40◦. Due to the limited accuracy of the 3D printing
instrument, the thickness of the metasurface is not very thin. However, with the development of 3D
printing technology and polishing technology, metasurface thickness can be thinner and can be changed
from translucent to transparent, which make it have a wider range of applications.
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