Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-04
AI-Based Fast Design for General Fiber-to-Waveguide Grating Couplers
By
Progress In Electromagnetics Research M, Vol. 119, 143-160, 2023
Abstract
Utilizing deep learning to replace numerical simulation solvers for electromagnetic wave propagation is a promising approach for the rapid design of photonic devices. However, to realize the advantages of deep learning for rapid design, it is essential to apply it to a general device structure. In this study, we propose a method that employs deep learning to assist in fast design of a general grating coupler structure. We use a modified 1D-ResNet18(1D-MR18) to predict the coupling efficiency of various grating couplers at different wavelengths. After comparing and selecting the optimal combination of learning rate, activation functions, and batch normalization size, the 1D-MR18 demonstrates remarkable accuracy (MSE: 2.18×10-5, R2: 0.969, MAE: 0.003). By integrating the 1D-MR18 with the adaptive particle swarm algorithm, we can efficiently design periodic and nonuniform grating couplers that meet various functional requirements, including single-wavelength grating couplers, multi-wavelength grating couplers, and robust grating couplers. The time for designing a single device is no more than 2 minutes, and the shortest is only 17 seconds. This novel approach of employing deep learning for the fast and efficient design from standard photonic device structures offers valuable insights and guidance for photonic devices design.
Citation
Zhenjia Zeng, Qiangsheng Huang, and Sailing He, "AI-Based Fast Design for General Fiber-to-Waveguide Grating Couplers," Progress In Electromagnetics Research M, Vol. 119, 143-160, 2023.
doi:10.2528/PIERM23072703
References

1. Neviere, M. and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design, CRC Press, 2002.

2. Mu, X., S. Wu, L. Cheng, and H. Fu, "Edge couplers in silicon photonic integrated circuits: A review," Applied Sciences, Vol. 10, No. 4, 1538, 2020.
doi:10.3390/app10041538

3. Marchetti, R., C. Lacava, A. Khokhar, X. Chen, I. Cristiani, D. J. Richardson, G. T. Reed, P. Petropoulos, and P. Minzioni, "High-efficiency grating-couplers: Demonstration of a new design strategy," Scientific Reports, Vol. 7, 16670, Nov. 2017.
doi:

4. Chrostowski, L. and M. Hochberg, Silicon Photonics Design: From Devices to Systems, Cambridge University Press, 2015.
doi:10.1017/CBO9781316084168

5. Cheng, L., S. Mao, Z. Li, Y. Han, and H. Y. Fu, "Grating couplers on silicon photonics: Design principles, emerging trends and practical issues," Micromachines, Vol. 11, No. 7, 666, 2020.
doi:10.3390/mi11070666

6. Djavid, M., S. A. Mirtaheri, and M. S. Abrishamian, "Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis," J. Opt. Soc. Am. B, Vol. 26, 849-853, Apr. 2009.
doi:10.1364/JOSAB.26.000849

7. Shen, L., Z. Ye, and S. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B, Vol. 68, 035109, Jul. 2003.

8. Assefa, S., F. Xia, and Y. A. Vlasov, "Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects," Nature, Vol. 464, 80-84, Mar. 2010.
doi:10.1038/nature08813

9. Peurifoy, J., Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljacic, "Nanophotonic particle simulation and inverse design using artificial neural networks," Science Advances, Vol. 4, No. 6, eaar4206, 2018.
doi:10.1126/sciadv.aar4206

10. Wu, Y.-D., "High efficiency multi-functional all-optical logic gates based on MIM plasmonic waveguide structure with the Kerr-type nonlinear nano-ring resonators," Progress In Electromagnetics Research, Vol. 170, 79-95, 2021.
doi:10.2528/PIER20082001

11. LeCun, Y., Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol. 521, 436-444, May 2015.
doi:10.1038/nature14539

12. Zhang, Z., J. Geiger, J. Pohjalainen, A. E.-D. Mousa, W. Jin, and B. Schuller, "Deep learning for environmentally robust speech recognition: An overview of recent developments," ACM Trans. Intell. Syst. Technol., Vol. 9, Apr. 2018.

13. Pak, M. and S. Kim, "A review of deep learning in image recognition," 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), 1-3, 2017.

14. Otter, D. W., J. R. Medina, and J. K. Kalita, "A survey of the usages of deep learning for natural language processing," IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 2, 604-624, 2021.
doi:10.1109/TNNLS.2020.2979670

15. Ho-Phuoc, T., "CIFAR10 to compare visual recognition performance between deep neural networks and humans,", CoRR, arXiv:1811.07270, 2018.

16. Shan, T., M. Li, S. Xu, and F. Yang, "Phase synthesis of beam-scanning reflectarray antenna based on deep learning technique," Progress In Electromagnetics Research, Vol. 172, 41-49, 2021.
doi:10.2528/PIER21091307

17. An, S., B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero- Baleine, M. Kang, K. A. Richards, T. Gu, J. Hu, C. Fowler, and H. Zhang, "Deep learning modeling approach for metasurfaces with high degrees of freedom," Opt. Express, Vol. 28, 31932-31942, Oct. 2020.

18. So, S., J. Mun, and J. Rho, "Simultaneous inverse design of materials and structures via deep learning: Demonstration of dipole resonance engineering using core-shell nanoparticles," ACS Applied Materials & Interfaces, Vol. 11, 24264-24268, Jul. 2019.

19. Jiang, J. and J. A. Fan, "Multiobjective and categorical global optimization of photonic structures based on resnet generative neural networks," Nanophotonics, Vol. 10, No. 1, 361-369, 2021.
doi:10.1515/nanoph-2020-0407

20. Jiang, H., J. Chen, K. Tang, H. Yan, and R. Hao, "Exploring high-performance slow light grating waveguides by means of deep learning," IEEE Photonics Technology Letters, Vol. 34, No. 20, 1112-1115, 2022.
doi:10.1109/LPT.2022.3203475

21. Miyatake, Y., N. Sekine, K. Toprasertpong, S. Takagi, and M. Takenaka, "Computational design of efficient grating couplers using artificial intelligence," Japanese Journal of Applied Physics, Vol. 59, No. SG, SGGE09.1-SGGE09.8, 2019.

22. Tu, X., W. Xie, Z. Chen, M.-F. Ge, T. Huang, C. Song, and H. Y. Fu, "Analysis of deep neural network models for inverse design of silicon photonic grating coupler," Journal of Lightwave Technology, Vol. 39, No. 9, 2790-2799, 2021.
doi:10.1109/JLT.2021.3057473

23. Tahersima, M. H., K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and K. Parsons, "Deep neural network inverse design of integrated photonic power splitters," Scientific Reports, Vol. 9, 1368, Feb. 2019.
doi:10.1038/s41598-018-37952-2

24. Taillaert, D., P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon on-insulator waveguides," Opt. Lett., Vol. 29, 2749-2751, Dec. 2004.
doi:10.1364/OL.29.002749

25. Na, N., H. Frish, I.-W. Hsieh, O. Harel, R. George, A. Barkai, and H. Rong, "Efficient broadband silicon-on-insulator grating coupler with low backreflection," Opt. Lett., Vol. 36, 2101-2103, Jun. 2011.
doi:10.1364/OL.36.002101

26. Orobtchouk, R., A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, "High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide," Appl. Opt., Vol. 39, 5773-5777, Nov. 2000.

27. Michaels, A. and E. Yablonovitch, "Inverse design of near unity efficiency perfectly vertical grating couplers," Opt. Express, Vol. 26, 4766-4779, Feb. 2018.
doi:10.1364/OE.26.004766

28. Chen, X., D. J. Thomson, L. Crudginton, A. Z. Khokhar, and G. T. Reed, "Dual-etch apodised grating couplers for efficient fibre-chip coupling near 1310 nm wavelength," Opt. Express, Vol. 25, 17864-17871, Jul. 2017.

29. Sanchez-Postigo, A., J. G. Wanguemert-Perez, J. M. Luque-Gonzalez, I. Molina-Fernandez, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Monux, "Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency," Opt. Lett., Vol. 41, 3013-3016, Jul. 2016.

30. Su, L., R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and J. Vuckovie, "Fully-automated optimization of grating couplers," Opt. Express, Vol. 26, 4023-4034, Feb. 2018.
doi:10.1364/OE.26.004023

31. Rahim, A., T. Spuesens, R. Baets, and W. Bogaerts, "Open-access silicon photonics: Current status and emerging initiatives," Proceedings of the IEEE, Vol. 106, No. 12, 2313-2330, 2018.
doi:10.1109/JPROC.2018.2878686

32. Roelkens, G., D. V. Thourhout, and R. Baets, "High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay," Opt. Express, Vol. 14, 11622-11630, Nov. 2006.

33. Taillaert, D., W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE Journal of Quantum Electronics, Vol. 38, No. 7, 949-955, 2002.
doi:10.1109/JQE.2002.1017613

34. Taflove, A., S. C. Hagness, and M. Piket-May, "Computational electromagnetics: The finite difference time-domain method," The Electrical Engineering Handbook, Vol. 3, No. 15, 629-670, 2005.
doi:10.1016/B978-012170960-0/50046-3

35. Berenger, J.-P., Perfectly Matched Layer (PML) for Computational Electromagnetics, Springer Nature, 2022.

36. Gedney, S. D. and B. Zhao, "An auxiliary differential equation formulation for the complex frequency shifted PML," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 838-847, 2010.
doi:10.1109/TAP.2009.2037765

37. He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016.

38. He, K., X. Zhang, S. Ren, and J. Sun, "Identity mappings in deep residual networks," Computer Vision --- ECCV 2016, 630-645, B. Leibe, J. Matas, N. Sebe, and M. Welling, eds., Springer International Publishing, Cham, 2016.

39. Glorot, X. and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249-256, Y. W. Teh and M. Titterington, eds., Vol. 9 of Proceedings of Machine Learning Research, PMLR, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010.

40. Clevert, D.-A., T. Unterthiner, and S. Hochreiter, "Fast and accurate deep network learning by exponential linear units (ELUS)," arXiv:1511.07289, 2015.

41. Klambauer, G., T. Unterthiner, A. Mayr, and S. Hochreiter, "Self-normalizing neural networks," Advances in Neural Information Processing Systems, Vol. 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., Curran Associates, Inc., 2017.

42. Elfwing, S., E. Uchibe, and K. Doya, "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning," Neural Networks, Vol. 107, 3-11, Special issue on deep reinforcement learning, 2018.

43. Dozat, T., "Incorporating nesterov momentum into adam," ICLR 2016, 2016.

44. Chicco, D., M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," PeerJ Computer Science, Vol. 7, e623, 2021.
doi:10.7717/peerj-cs.623

45. Smith, L. N., "A disciplined approach to neural network hyper-parameters: Part 1 --- Learning rate, batch size, momentum, and weight decay,", CoRR, abs/1803.09820, 2018.

46. Ioffe, S. and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," Proceedings of the 32nd International Conference on Machine Learning, 448-456, F. Bach and D. Blei, eds., Vol. 37 of Proceedings of Machine Learning Research, PMLR, Lille, France, Jul. 7-9, 2015.

47. Goyal, P., P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, "Accurate, large minibatch SGD: Training imagenet in 1 hour,", CoRR, abs/1706.02677, 2017.

48. Masters, D. and C. Luschi, "Revisiting small batch training for deep neural networks,", CoRR, abs/1804.07612, 2018.

49. Smith, S. L., P. Kindermans, and Q. V. Le, "Don't decay the learning rate, increase the batch size,", CoRR, abs/1711.00489, 2017.

50. Zhang, Z., Y. Jiang, S. Zhang, S. Geng, H. Wang, and G. Sang, "An adaptive particle swarm optimization algorithm for reservoir operation optimization," Applied Soft Computing, Vol. 18, 167-177, 2014.
doi:10.1016/j.asoc.2014.01.034

51. Wang, J., C. Gui, C. Li, Q. Yang, D. Gao, J. Sun, and X. Zhang, "On-chip demultiplexing of polarization and wavelength multiplexed of DM/OQAM 64/128-QAM signals using silicon 2D grating coupler and microring resonators," Optical Fiber Communication Conference, Th2A.48, Optica Publishing Group, 2014.

52. Li, H.-Y., W.-C. Hsu, K.-C. Liu, Y.-L. Chen, L.-K. Chau, S. Hsieh, and W.-H. Hsieh, "A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities," Sensors and Actuators B: Chemical, Vol. 206, 371-380, 2015.
doi:10.1016/j.snb.2014.09.065

53. Xu, L., X. Chen, C. Li, and H. K. Tsang, "Bi-wavelength two dimensional chirped grating couplers for low cost WDM pon transceivers," Optics Communications, Vol. 284, No. 8, 2242-2244, 2011.
doi:10.1016/j.optcom.2010.12.072

54. Zhou, X. and H. K. Tsang, "Photolithography fabricated sub-decibel high-efficiency silicon waveguide grating coupler," IEEE Photonics Technology Letters, Vol. 35, No. 1, 43-46, 2023.
doi:10.1109/LPT.2022.3221527

55. Duan, L., C. Xu, S. Zhong, H. Zhou, and J. Duan, "Optical power auto-alignment method with eugenics sorting for enhancing the alignment speed and robustness of fiber-grating couplers," Opt. Express, Vol. 30, 39544-39560, Oct. 2022.