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AI-Based Fast Design for General Fiber-to-Waveguide Grating
Couplers

Zhenjia Zeng1, Qiangsheng Huang2, *, and Sailing He1, 2, *

Abstract—Utilizing deep learning to replace numerical simulation solvers for electromagnetic wave
propagation is a promising approach for the rapid design of photonic devices. However, to realize
the advantages of deep learning for rapid design, it is essential to apply it to a general device
structure. In this study, we propose a method that employs deep learning to assist in fast design
of a general grating coupler structure. We use a modified 1D-ResNet18(1D-MR18) to predict the
coupling efficiency of various grating couplers at different wavelengths. After comparing and selecting the
optimal combination of learning rate, activation functions, and batch normalization size, the 1D-MR18
demonstrates remarkable accuracy (MSE : 2.18× 10−5, R2 : 0.969, MAE : 0.003). By integrating the
1D-MR18 with the adaptive particle swarm algorithm, we can efficiently design periodic and nonuniform
grating couplers that meet various functional requirements, including single-wavelength grating couplers,
multi-wavelength grating couplers, and robust grating couplers. The time for designing a single device
is no more than 2 minutes, and the shortest is only 17 seconds. This novel approach of employing
deep learning for the fast and efficient design from standard photonic device structures offers valuable
insights and guidance for photonic devices design.

1. INTRODUCTION

Grating is an optical element composed of a series of parallel trenches and teeth arranged in a precisely
periodic manner, where the spacing and shape of these trenches and teeth can be precisely controlled
to disperse the incident light or control the diffraction angle of incident light [1]. A grating can couple
the light efficiently from a fiber to an SOI (Silicon-on-Insulator) waveguide [1]. Edge couplers [2] and
grating couplers [3] are two common devices used for coupling light between optical fibers and integrated
photonic circuits. Compared to edge couplers, grating couplers are more compact in shape, have lower
fabrication costs, and offer greater tolerance in the alignment of optical fibers during coupling, enabling
wafer-scale optical testing and chip manufacturing [4, 5].

In the design of photonic devices, traditional approaches typically involve starting with standard
geometric structures and conducting extensive parameter scans or utilizing optimization algorithms
such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) for iterative refinement
to find the optimal structural parameters [6, 7]. This process requires complex Maxwell’s numerical
solvers which are highly time-consuming and inefficient [7]. Numerical solvers necessitate meticulous
meshing and iterative solving of the device structure, demanding intricate modeling procedures and
significant computational resources. As the device volume increases or when fine meshing is required, the
computational resources needed become even more substantial, consequently prolonging the simulation
time [8, 9]. Conducting numerous numerical simulations to achieve the optimal device structure becomes
practically infeasible [7, 10].
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Deep learning is a data-driven methodology, primarily relying on the construction of multi-
layered neural networks to learn feature representations from data, thereby modeling the mapping
relationships or hidden rules between input and output data within a dataset [11]. Deep learning
has achieved significant breakthroughs in various domains, including speech recognition [12], image
recognition [13], natural language processing [14], and has even surpassed human performance levels
in many applications [15]. In the field of photonic devices design, there is also a growing interest
in leveraging deep learning methods. Deep learning can effectively capture the highly nonlinear
relationships between the geometric structure of photonics devices and their optical responses based
on experimentally or computationally obtained datasets [9, 16]. These datasets can be generated in a
parallel manner and applied to the design of photonics devices with structurally similar but functionally
distinct characteristics, thus circumventing the need for extensive numerical simulations with each new
design. Presently, deep learning has found widespread application in the rapid design of photonics
devices, such as metasurfaces [17], nanoparticles [18], membrane stacks [19], and integrated waveguide
components [20].

In the design of grating couplers, studies [21, 22] have explored the use of deep neural networks as
a replacement for numerical simulators to achieve more efficient designs. However, the neural network
architectures and grating structures employed in these studies were relatively simplistic, limiting the
exploration to smaller parameter spaces and achieving only limited functionalities of the couplers [21, 22].
The true advantage of employing neural networks as substitutes for numerical simulators lies in their
universality. Only when a trained neural network is capable of designing diverse devices with different
functionalities, can it effectively distribute the time cost of generating datasets and training models [23].
Non-uniform gratings offer higher design degrees of freedom, enabling not only higher coupling efficiency
but also satisfying the design requirements for different bandwidths [24, 25]. Therefore, they present a
standard structure for designing different functional grating couplers and have been widely adopted in
the design of highly efficient, large-bandwidth grating couplers [24, 25].

In this paper, we propose a novel approach utilizing deep neural networks to assist in grating
coupler design from standard grating coupler structures. We employ one-dimensional nonuniform
grating couplers as the fundamental geometric structures and introduce two parameters, incident angle
and etch depth, into the parameter space. The grating coupler structure we adopt exhibits excellent
versatility, making it applicable to the design of grating couplers with diverse functionalities. Upon
sufficient training, the deep neural network can model the highly nonlinear relationship between the
parameter space of one-dimensional nonuniform coupling gratings and their optical characteristics,
replacing numerical solvers for rapid computation of the grating coupler’s optical properties. This
precise solving approach can be accomplished within fractions of a second, enabling rapid optimization
of grating couplers. We apply this method to the fast design of various grating couplers with different
functionalities, such as single-wavelength grating couplers, multi-wavelength grating couplers, and
robust grating couplers.

2. DESIGN PARAMETERS OF GRATING COUPLERS

The simplest grating coupler is achieved using a uniform grating. However, due to the directionality of
the grating and mode mismatch, the coupling efficiency of the uniform grating can theoretically reach
only about 80% at best, making it challenging for multi-wavelength or large bandwidth designs [26].
Higher coupling efficiency, wider bandwidth, or additional functionalities can only be achieved through
alternative approaches, such as nonuniform gratings [24], multi-layer gratings [27], gratings with
multiple etch depths [28], and unconventional geometric shapes of gratings [29]. Among these options,
nonuniform gratings stand out for their simplicity, ease of fabrication, and high design flexibility, making
them suitable for various functional grating coupler designs [30]. Grating couplers are often implemented
on the Silicon-on-Insulator (SOI) platform, which offers strong optical confinement and compatibility
with Complementary Metal-Oxide-Semiconductor (CMOS) processes, making it an excellent structure
for designing grating couplers [31].

In this work, we adopt a nonuniform grating coupler based on the SOI platform as our fundamental
structure. Figure 1 illustrates the two-dimensional cross-sectional schematic of the adopted grating
coupler. The parameters of our grating coupler are referenced from the configuration in Reference [21],
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Figure 1. Two-dimensional cross-sectional schematic of a nonuniform grating coupler.

with a grating length of 12µm, a buried oxide layer thickness of 2µm, and a fixed Si thickness of
220 nm. On the surface of the SOI, we cover a layer of SiO2 with a thickness of 720 nm. A previous
study [32] indicates that adding a Poly-Silicon layer to the grating can enhance the coupling efficiency
of incident light to the output, improving the overall performance of the grating coupler. A TE-mode
Gaussian beam is incident into the grating from an SMF-28 optical fiber, with the fiber positioned at
the center of the grating. The incident angle is θ, and the Gaussian beam’s mode field diameter is
10.4µm. The nonuniform grating is defined to have 25 trench widths and 25 tooth widths. To reduce
the design space and ease the burden on the neural network fitting process, we divide the nonuniform
grating into 5 sections, each having the same structure with a width of 2.4µm. Consequently, for the
entire nonuniform grating, we consider 10 design parameters per grating period (5 trench widths d1, d2,
..., d5, and 5 tooth widths w1, w2, ..., w5), etch depth ratio h, and incident angle θ.

We proceeded to generate the dataset required for training the neural network model based on the
adopted nonuniformly coupled grating structure. In this work, we limit the incident angle between 5
to 25 degrees. This range is chosen because at very small incident angles, the input light undergoes
second-order Bragg diffraction in the coupling grating, reducing the coupling efficiency and affecting
the resonant wavelength and dispersion characteristics of the coupling grating [33]. Very large incident
angles can lead to total reflection in the SiO2 cladding and also result in mode mismatch of the incident
light. To maintain a unified scale for the input data, we normalize the incident angle by dividing it
by the maximum allowed value of 25 degrees, thus restricting θ to the range of 0.2 to 1.0. Regarding
the etch depth ratio, h, we only consider coupling gratings with etch depths between 20% to 100%, as
too shallow etch depths lead to minimal light coupling into the grating. Therefore, the range of h is
set between 0.2 to 1.0. For the trench width and tooth width, considering the resolution of electron
beam lithography, we impose a minimum width of 100 nm for both the trench and tooth. To maintain
a constant total length of the grating while adhering strictly to the minimum feature size limitation,
we adopt a reparameterization method for generating the trench width and tooth width randomly, yet
satisfying some constrains. We assume that the grating has a total length of L, with M trenches and
M teeth, and minimum feature sizes wm and dm. We introduce random latent space variables sw1 , ...,
swM , sd1 , ..., sdM to generate random trench width and tooth width, respectively. According to

wi =
swi

M∑
j=1

swj + sdj

(L−Mwm −Mdm) + wm, i = 1, 2, · · · ,M (1)
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di =
sdi

M∑
j=1

swj + sdj

(L−Mwm −Mdm) + dm, i = 1, 2, · · · ,M (2)

where wi represents the trench width, and di represents the tooth width. Due to

L−Mwm −Mdm ≥ 0, swi ≥ 0, sdj ≥ 0 (3)

we have wi ≥ wm and di ≥ dm. Additionally,

M∑
i=1

wi + di =

M∑
i=1

swi + sdi

M∑
j=1

swj + sdj

(L−Mwm −Mdm) +Mdm +Mwm = L (4)

Therefore, after applying the reparameterization method, each generated grating has a fixed total
length, denoted by L, and the trench width and tooth width are strictly larger than the minimum
feature sizes wm and dm. In this study, L is set to 2.4µm, and both wm and dm are 100 nm. This
approach effectively prevents significant variations in grating length during dataset generation, which
could hinder the convergence of the neural network training process and ensures strict control of the
grating’s minimum feature sizes. Commercial software Lumerical FDTD is employed for generating
the dataset by random sampling within the constrained parameter space and latent space. In the field
of optical communication, common central wavelengths for grating couplers are 1310 nm and 1550 nm.
Considering the bandwidth requirements, we set the incident light wavelength in the range of 1200 nm
to 1700 nm and discretize it into 200 points uniformly in frequency space. Since the optical response of
the grating coupler is greatly influenced by the widths of the teeth and trenches, we use “precise volume
average” mesh refinement method, which is an auto nonuniform method and can provides more sensitive
meshing to small geometric variations [34]. All the boundary conditions are set to “PML”, which can
absorb electromagnetic waves with minimal reflections (as if in a homogenous space) [35, 36]. The
parameters of the grating coupler and the corresponding coupling efficiencies for each wavelength are
saved as input and output for the neural network, respectively. Therefore, our input is a 12-dimensional
vector, while the output is a 200-dimensional vector. We generated a total of 303074 data sets and
divided them in an 8 : 2 ratio, with 242459 sets used for training and 60615 sets for testing.

3. DEEP LEARNING MODEL

In the grating coupler design, the mapping between structural parameters and coupling efficiency at
different wavelengths is a highly complex and highly nonlinear function. Previously, we have employed
simple fully connected and convolutional neural network to modeling the inner mapping, but both were
challenging to accurately establish the relationship between the structural parameters and coupling
efficiency. Therefore, we adopted a deeper neural network architecture to capture the implicit complex
relationship between the structural parameters and coupling efficiency.

The deep model structure used in this study, as shown in Figure 2(a), is based on an 18-layer ResNet.
ResNet is a classical deep convolutional neural network architecture introduced by Kaiming He et al.
in 2015 [37]. The key feature of ResNet is the incorporation of residual blocks, which mitigates the
degradation problem in deep neural networks [37, 38]. This degradation issue refers to the phenomenon
where increasing network depth leads to an increase in test error [39]. The main structure of ResNet
comprises multiple residual blocks, each containing multiple convolutional layers, batch normalization
layers, activation functions, and a shortcut connection. The shortcut connection within the residual
block allows the neural network to skip some layers and directly propagate the input signal to the
subsequent layers, thus alleviating the vanishing gradient and exploding gradient problems in deep
neural networks [38].

Unlike the original ResNet-18, where inputs are two-dimensional, our input is a one-dimensional
vector. Consequently, we replaced all 2D convolutional kernels in the network with 1D convolutions and
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(a)

(b) ResBlock (channel c, stride 1)

(c) ResBlock (channel 2c, stride 2)

Figure 2. 1D-MR18. (a) Architecture of 1D-MR18; (b) Residual block structure when the input and
output dimensions are the same; (c) Residual block structure when the input and output dimensions
differ.

modified the shortcut connections within the residual blocks to be 1D connections. As our input consists
of continuous data rather than the original image data used in ResNet-18, the information content in the
data is substantial. Therefore, the initial larger stride convolutions and pooling in ResNet-18 may lead
to information loss in the input. To address this, we removed the max-pooling layer from ResNet-18
and modified the convolutional stride in the first convolutional layer and the third residual block to
be 1. Although the original ResNet-18 used the ReLU function as the activation function, in recent
years, new activation functions have been continuously proposed and have shown better performance
than the ReLU function in experiments, such as ELU [40], SELU [41], SiLU [42], etc. During the model
pre-training, we trained the model using different activation functions under the same conditions and
compared their performance, which we will discuss in the model training section. The experimental
results showed that the model with ELU as the activation function exhibited superior performance. We
adopted ELU as the activation function for our model.

In the residual blocks, we employed two sets of convolutional layers, batch normalization layers,
activation function layers, and a shortcut connection structure. Depending on the output dimensionality,
we used two different residual structures, as depicted in Figure 2(b) and Figure 2(c). Their corresponding
output relationships are as follows:

y = F (x) + x (5)

y = F (x) +H(x) (6)

where x represents the input to the residual block; y denotes the output of the residual block; F (x)
refers to the output of the residual block without the shortcut connection; and H(x) represents the
output of the shortcut connection when the input and output dimensions differ. After the final linear
layer, we removed the original activation function in ResNet because our problem is a continuous spatial
nonlinear regression problem, and the presence of the activation function in the last layer would affect
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the continuity of the model output. As the model is a modification of ResNet18, we refer to it as
1D-MR18.

4. MODEL TRAINING AND EVALUATION

We constructed our model using Python 3.8 and PyTorch 1.10 and conducted training on a machine
equipped with a NVIDIA GeForce GTX 1080 Ti GPU running Ubuntu. The model’s input is a one-
dimensional structural vector of length 12, containing the incident angle of the grating coupler, etch
depth ratio, as well as the widths of 5 trench widths and 5 tooth width that constitute the periodic
grating. The output is the coupling efficiency discretized into 200 points between wavelengths ranging
from 1200 nm to 1700 nm using Lumerical FDTD’s built-in adaptive mesh technology. We adopted
NAdam algorithm as the optimization algorithm for our model. NAdam is an extension of the Adam
algorithm, incorporating the Nesterov momentum term. In comparison to Adam, NAdam can accelerate
the convergence speed and enhance the performance of the model [43]. Before the formal training, we
considered factors that could impact the model’s predictive performance, namely the learning rate,
activation functions, and batch size. We denoted MSEt to represent the average loss function value of
the model on the test set. In addition to the loss function, we also evaluated our model’s predictive
performance using R2, a statistical metric used to assess the goodness of fit of the regression model
to the observed data and provides more informative insights compared to MSE [44]. R2 is defined as
follows:

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳi)
2

(7)

Here, yi represents the ground truth, which is the coupling efficiency simulated using FDTD. ŷi
represents the predicted value, which is the model’s predicted coupling efficiency. ȳi denotes the average
of the ground truth values and N is the number of samples, which is the discrete number of wavelengths.
We denote the average R2 on the test set as R2

t , which measures the goodness of fit of the model’s
predictions to the observed coupling efficiency.

4.1. Learning Rate Comparison

The learning rate is a crucial factor affecting model performance. The choice of learning rate directly
influences the convergence speed and final performance of the model. If the learning rate is too large,
the model may diverge during training and fail to converge to an optimal solution [45]. Conversely, if
the learning rate is too small, the model may converge slowly or get trapped in local minima, making
it difficult to escape [45]. To improve the model’s ability to escape local minima and achieve faster
convergence, we employed a grid search approach to explore the learning rate space. Initially, we
trained 1D-MR18 using equally spaced learning rates on a logarithmic scale, such as 0.01, 0.001, 0.0001,
and 0.00001, and compared their performance in terms of MSEt and R2

t . Based on this preliminary
analysis, we determined that the optimal learning rate lies within the range of 0.01 to 0.0001. Next, we
conducted a logarithmic search within the range of 0.01 to 0.0001 on the learning rate axis. Figure 3
illustrates the model’s performance under different learning rates. Both MSEt and R2

t tend to reach
their minimum or maximum values within the range of 0.00025 to 0.0025, and the differences within
this range are relatively small. As a result, we selected a learning rate of 0.0005 from the interval of
0.00025 to 0.0025 as the final learning rate for the formal training.

4.2. Activation Function Comparison

The original ResNet18 framework employs the ReLU activation function. However, in recent years, new
activation functions have been continuously proposed and experimentally demonstrated to outperform
ReLU in terms of performance, such as ELU [40], SELU [41], SiLU [42], etc. To achieve superior
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(a) (b)

Figure 3. Comparison of the model performance under different learning rates. (a) MSEt under
various learning rates; (b) R2

t under various learning rates.

model performance, this study compares the performance of 1D-MR18 utilizing these newly introduced
activation functions under the same training conditions. The results are presented in Figure 4. It is
evident that the 1D-MR18 using the ELU activation function exhibits the best performance, both in
terms of MSEt and R2

t . Consequently, we adopt the ELU function as the activation function in our
network framework.

(a) (b)

Figure 4. Comparison of the model performance under different activation functions. (a) MSEt under
various activation functions; (b) R2

t under various activation functions.

4.3. Batch Size Comparison

Batch Normalization is a regularization technique used in deep neural networks [46]. It normalizes the
input data for each mini-batch and introduces learnable parameters to adjust the normalized results.
By normalizing the data for each mini-batch, Batch Normalization ensures that the inputs to each layer
have similar distributions, reducing internal covariate shift and accelerating model convergence [46].
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(a) (b)

Figure 5. Comparison of model performance under different batch sizes. (a) MSEt and training time
loss under various batch sizes; (b) R2

t under various batch sizes.

Selecting an appropriate batch size is a crucial hyperparameter tuning process for both the effectiveness
of Batch Normalization and the overall training performance of the model. Larger batch sizes can
provide more accurate estimates of mean and variance for Batch Normalization, reduce training time,
and enhance training stability [47, 48]. However, they may increase the model’s runtime memory
footprint and diminish the model’s ability to handle variations in gradients, leading to a decline in
model performance [47, 48]. Smaller batch sizes can reducing runtime memory and improve the model’s
generalization performance, but they may prolong training time and reduce the model’s resilience to
noise [49]. We conducted training using different batch sizes and compared theirMSEt, R

2
t , and training

time, as shown in Figure 5. From the perspective of MSEt and R2
t , when the batch size is small, the

performance of the model varies only slightly. As the batch size increases, the performance of the model
gradually declines. However, considering the training time, smaller batch sizes result in exponentially
increasing training time. To strike a balance between performance and training time, we selected a
batch size of 256 as the optimal parameter for the formal training of the model.

4.4. Model Evaluation

We conducted formal training based on the selected hyperparameters as discussed above. The
aforementioned discussion results can provide reasonably good choices for hyperparameters, but a more
fine-grained hyperparameter search may lead to even better performance. The variation of the loss
function during the training process is illustrated in Figure 6(a). After 600 epochs of training, the loss
functions for both the training and test sets no longer decrease, indicating that the model has reached
sufficient stability. At this stage, the model’s MSEt is 2.18×10−5, and R2

t is 0.969, demonstrating that
the model’s predictions on unknown data are closely aligned with the true values. We also performed
statistical analysis on the model’s average prediction error on the test set. The calculation for the
average prediction error is as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi| (8)

where yi represents the ground truth values, which is the coupling efficiency obtained from FDTD
simulations, and ŷi represents the predicted values, which is the model’s predicted coupling efficiency.
N is the number of samples, which is the discrete number of wavelengths and in this study is 200. The
statistical results of the model’s average prediction error on the test set are presented in Figure 6(b).
The model’s prediction error is mostly within the range of 0 to 0.01, with an overall average prediction
error of 0.003. This indicates that our model’s predictions are very close to the true values. Since the
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(a) (b)

(c) (d)

Figure 6. (a) Variation curve of the loss function during the training process; (b) Statistical plot of
the prediction error of the model on the test set; (c) Correlation between the model’s predictions and
the actual values at 1310 nm; (d) Correlation between the model’s predictions and the actual values at
1550 nm.

common operating wavelengths for the coupling grating are 1310 nm and 1550 nm, we also compared
the correlation between the model’s predictions and the ground truth values at these two wavelengths,
as shown in Figure 6(c) and Figure 6(d). All data points are closely aligned around the y = x line,
indicating that our model’s predictions are in good agreement with the true values obtained from FDTD
simulations.

5. GRATING COUPLER DESIGN

We then proceed to use the trained deep learning model for grating coupler design. Our design process
is illustrated in Figure 7(a), where we employ an Adaptive Particle Swarm Optimization (APSO)
algorithm [50] to search the design space of the device. APSO is a variant of the Particle Swarm
Optimization algorithm that incorporates adaptive mechanisms to dynamically adjust particle swarm
parameters, thereby enhancing search efficiency [50]. During this process, our deep learning model
replaces the numerical model to calculate the Figure of Merit (FOM) value for each individual, and the
results are fed back into the APSO algorithm for iterative optimization. The comparison between our
design method and traditional design methods is presented in Figure 7(a) and Figure 7(b). Notably,
our method takes an average of only 0.06 s to compute the FOM for a particle individual, while
using the numerical simulator FDTD requires 19 s. Consequently, our approach achieves a speedup
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(a) (b)

Figure 7. (a) A global optimization design process using the deep neural network (DNN); (b) A global
optimization design process using a numerical simulation method (FDTD) for electromagnetic wave
propagation.

of approximately 300 times in terms of solution speed. Since we employ a general-purpose grating
coupler structure, our deep learning model can be applied to the design of grating couplers for various
functionalities.

5.1. Single-Wavelength Grating Coupler Design

Single-wavelength couplers are common designs for grating couplers, aiming to achieve maximum
coupling efficiency for a specific wavelength [26]. The primary function of these grating couplers is
to couple light of a single wavelength between optical fibers and integrated platforms. Higher coupling
efficiency helps reduce signal loss and improves the transmission performance of the system. This
feature finds crucial applications in areas such as optical communication [51], optical sensing [52], and
LiDAR [5]. The commonly used operating wavelengths for grating couplers are 1310 nm and 1550 nm.
Using our design methodology, we optimize grating couplers for both of them. The objective function
we employ aims to maximize the coupling efficiency at the target wavelength, formulated as follows:

FOM = Eff obj (9)

where, Eff obj represents the coupling efficiency at the target wavelength.
The design results are presented in Figure 8, showing that the grating couplers designed for the

four operating wavelengths exhibit high coupling efficiency. Our designed single-wavelength couplers do
not outperform existing literature results, where the highest coupling efficiency achieved for a grating
coupler at the operating wavelength of 1550 nm is 72.8% [3]. This discrepancy could be attributed to
the consideration of only 1/5 of the overall device parameters and the restriction on the total length
of the grating in our design, whereas adopting more flexible device structures could potentially yield
higher coupling efficiency grating couplers. Compared to traditional design methods, our approach
demonstrates significant speed advantages. The design of the grating couplers for the two operating
wavelengths can be completed within one minute, with each of them taking only 21 seconds. In contrast,
traditional optimization methods typically require several hours to several tens of hours for similar
designs [6, 7]. The corresponding parameters of each grating coupler in Figure 8 are presented in Table 1
(θ and h have been converted back to angles and etch depths respectively for data visualization).

5.2. Multi-Wavelength Grating Coupler Design

Multi-wavelength grating couplers are designed to achieve efficient coupling of multiple wavelengths,
transmitting them simultaneously into the same waveguide. By using these multi-wavelength couplers,
different wavelengths of light signals can be transmitted within the same optical fiber, contributing to
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(a) (b)

Figure 8. Design results for single-wavelength grating coupler; (a) λ = 1310 nm; (b) λ = 1550 nm.

Table 1. Corresponding parameters of each optimized single-wavelength grating coupler in Fig. 8.

λ (nm) θ (◦) h (nm) d1 (µm) w1 (µm) d2 (µm) w2 (µm) d3 (µm) w3 (µm) d4 (µm) w4 (µm) d5 (µm) w5 (µm)

1310 8.4 61 0.356 0.109 0.21 0.339 0.151 0.3 0.184 0.29 0.199 0.262

1550 5.5 79 0.182 0.431 0.266 0.176 0.1 0.1 0.218 0.308 0.261 0.358

increased communication bandwidth and improved system transmission capacity [53]. The optimization
objective for multi-wavelength grating couplers typically seeks to maximize the coupling efficiency
at multiple wavelengths while maintaining similar coupling efficiencies across different operating
wavelengths. To achieve these two objectives, our design employs the following optimization objective
function:

FOM =

K∑
i=1

Eff obji − β ·
K∑
i=1

∣∣Eff obji − Eff obj

∣∣ (10)

where K represents the number of operating wavelengths to be optimized; Eff obji denotes the coupling

efficiency at the i-th operating wavelength; Eff obj represents the average coupling efficiency across all
target wavelengths; and β is a weight adjustment factor.

We have determined through experimentation that β is equal to 1 and selected four sets of dual-
wavelength couplers from commonly used wavelength bands for design, as shown in Figure 9. The results
demonstrate the effectiveness of our method in tailoring designs according to specific requirements. The
coupling efficiency for dual-wavelength operation is generally lower than single-wavelength operation,
indicating that satisfying the requirements for dual-wavelength devices demands more stringent device
structures with higher degrees of freedom in device parameters. The dual-wavelength designs presented
in Figure 9 can also be rapidly designed in approximately one minute, showcasing the superior speed
advantages of our model-based design approach. The corresponding parameters of each grating coupler
in Figure 9 are presented in Table 2 (θ and h have been converted back to angles and etch depths
respectively for data visualization).
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(a) (b)

Figure 9. Design results for dual-wavelength grating couplers; (a) λ1 = 1260 nm, λ2 = 1490 nm; (b)
λ1 = 1310 nm, λ2 = 1550 nm.

Table 2. Corresponding parameters of each optimized dual-wavelength grating coupler in Figure 9.

λ (nm) θ (◦) h (nm) d1 (µm) w1 (µm) d2 (µm) w2 (µm) d3 (µm) w3 (µm) d4 (µm) w4 (µm) d5 (µm) w5 (µm)

1260

1490
13.1 78 0.294 0.367 0.2 0.1 0.104 0.299 0.265 0.297 0.267 0.208

1310

1550
5.4 81 0.214 0.352 0.2 0.346 0.165 0.327 0.367 0.1 0.1 0.229

5.3. Robust Grating Coupler Design

During the etching process of grating couplers, the manufactured device structures may deviate from
the nominal design due to the limitations of etching technology precision [54]. These deviations result
in certain parameter variations rather than exact replicas of the intended design [54]. In practical
applications, if a grating coupler is effective only at a specific operating wavelength, significant changes
in coupling efficiency when deviating from that wavelength can render the designed grating coupler
impractical [55]. Therefore, ensuring robustness in the designed grating couplers is of paramount
importance. Considering robustness during the design process effectively addresses the issues arising
from limitations in etching technology precision, thereby enhancing the reliability and applicability of
the devices.

To address the etching precision issue in grating couplers, we treat the etching accuracy error as
corrosion or expansion of the grating teeth. During the design process, we integrate the original device’s
coupling efficiency with the target coupling efficiency of the dilated or eroded device and calculate the
difference with the target coupling efficiency of the original device. Let the original device’s structural
parameters be denoted as Soriginal , the structural parameters after dilating the grating teeth by a nm
as Sdilatea , and the structural parameters after eroding the grating teeth by a nm as Serodea . The
relationship is expressed as:

Sdilatea : θ = θ, h = h, wi ← wi − a, di ← di + a, i = 1, 2, . . . ,M (11)

Serodea : θ = θ, h = h, wi ← wi + a, di ← di − a, i = 1, 2, . . . ,M (12)
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The corresponding objective function is as follows:

FOM = Eff obj(Soriginal )− β ·
∣∣Eff obj(Soriginal )− Eff obj(Sdilatea)

∣∣
−β ·

∣∣Eff obj(Soriginal )− Eff obj(Serodea)
∣∣ (13)

where Eff obj(Soriginal ) represents the target coupling efficiency of the original device’s structure;
Eff obj(Sdilatea) represents the target coupling efficiency of the device with the grating teeth dilated
by a nm; Eff obj(Serodea) represents the target coupling efficiency of the device with the grating teeth
eroded by an nm; and β is a weight adjustment factor.

To address the significant decrease in efficiency caused by deviations in the incident angle, we
integrate the target coupling efficiency of the original incident angle with the target coupling efficiency
when deviating from the original incident angle, and calculate the difference with the target coupling
efficiency at the original incident angle. Let the structural parameters of the device when deviating left

(a) (b)

(c) (d)

Figure 10. Designs result for robust grating couplers. (a) λ = 1310 nm, dilating or eroding by 20 nm;
(b) λ = 1310 nm, dilating or eroding by 40 nm; (c) λ = 1310 nm, the incident angle is set to 10 degrees
with deviations of 1 degree left and right; (d) λ = 1310 nm, the incident angle is set to 10 degrees with
deviations of 1.5 degrees left and right.
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from the angle α be denoted as S−α, and the structural parameters of the device when deviating right
from the angle α be denoted as Sα. The relationship is expressed as:

S−α : θ ← θ − α, h = h, wi = wi, di = di, i = 1, 2, . . . ,M (14)

Sα : θ ← θ + α, h = h, wi = wi, di = di, i = 1, 2, . . . ,M (15)

The corresponding objective function is as follows:

FOM = Eff obj − β ·
∣∣Eff obj − Eff obj−α

∣∣− β ·
∣∣Eff obj − Eff objα

∣∣ (16)

where Eff obj represents the target coupling efficiency at the original incident angle; Eff obj−α
represents

the coupling efficiency when deviating left by α degrees from the original incident angle; Eff objα
represents the coupling efficiency when deviating right by α degrees from the original incident angle;
and β is a weight adjustment factor.

We have determined through experimentation that β is equal to 1 and have designed grating
couplers for the working wavelength of 1310 nm with three different scenarios: dilating or eroding the
grating by 20 nm, dilating or eroding the grating by 40 nm, and setting the incident angle at 10 degrees
while deviating left and right by 1 degree, and deviating left and right by 1.5 degrees. As shown in
Figure 10, the coupling efficiency curves for dilating or eroding by 20 nm and 40 nm closely overlap with
the original curve. For the incident angle deviations of 1 degree and 1.5 degrees, although the coupling
curves exhibit slight deviations from the original coupling efficiency curve, these variations are within
an acceptable range. The coupling efficiencies at the working wavelength remain relatively close to the
original values. This indicates that our method is capable of designing grating couplers effectively, even
in the presence of precision errors and incident angle deviations. The corresponding parameters of each
grating coupler in Figure 10 are presented in Table 3 (θ and h have been converted back to angles and
etch depths respectively for data visualization).

Table 3. Corresponding parameters of each optimized robust grating coupler in Figure 10.

λ (nm) θ (◦) h (nm) d1 (µm) w1 (µm) d2 (µm) w2 (µm) d3 (µm) w3 (µm) d4 (µm) w4 (µm) d5 (µm) w5 (µm)

1310 8.8 58 0.276 0.239 0.178 0.303 0.22 0.257 0.19 0.298 0.207 0.23

1310 8.9 58 0.23 0.271 0.178 0.297 0.214 0.266 0.211 0.272 0.215 0.246

1310 10 63 0.177 0.339 0.1 0.363 0.186 0.305 0.16 0.307 0.206 0.256

1310 10 65 0.21 0.321 0.1 0.352 0.199 0.324 0.129 0.33 0.209 0.227

6. SUMMARY

Using deep learning as a replacement for numerical solvers for electromagnetic wave propagation
is a promising approach for rapid photonics device design. However, deep learning often requires
significant computational resources and time-consuming operations, such as dataset preparation and
model training. Thus, to fully exploit the advantages of fast design using deep learning, it should
be applied to a general device structure. In this study, we propose a universal periodic nonuniform
grating structure and employ a modified 1D-ResNet18 (1D-MR18) neural network for rapid design.
We begin by discussing and comparing the impacts of learning rate, activation functions, and batch
normalization size on the 1D-MR18 and determine its optimal parameter settings. We evaluate the
predictive performance of 1D-MR18 for grating coupler efficiency using metrics such as MSE, R2,
MAE, and correlations between the predicted values of 1D-MR18 at 1310 nm and 1550 nm and the
truth values. The results demonstrate that 1D-MR18 accurately predicts grating coupler efficiency with
low MSE (as low as 2.18×10−5), high R2 (up to 0.969), and low MAE (as low as 0.0003). We combine
1D-MR18 with the APSO Algorithm for designing general periodic nonuniform grating structures. This
approach efficiently designs grating couplers with various functional requirements, including single-
wavelength couplers, multi-wavelength grating couplers, and robust grating couplers. The time cost for
designing a single device ranges from a maximum of 2 minutes to as short as 17 seconds. Although the
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designed grating coupler efficiency may not surpass existing literature due to structural constraints, it
meets the demands of both scientific research and industrial production. Moreover, considering more
flexible grating coupler structures would give higher coupling efficiency, indicating significant potential
for our method in grating coupler design. Our rapid and efficient approach, applying deep learning to
general-purpose photonic devices, offers insights and guidance for silicon photonics device design.
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