Vol. 103
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-11-09
Electromagnetic Force and Momentum in Classical Macroscopic Dipolar Media
By
Progress In Electromagnetics Research B, Vol. 103, 119-138, 2023
Abstract
Using realistic classical models of microscopic electric-charge electric dipoles and electric-current (Amperian) magnetic dipoles, it is proven that the Einstein-Laub macroscopic electromagnetic force on a macroscopic-continuum volume of these classical dipoles equals the sum of the microscopic electromagnetic forces on the discrete classical dipoles in that volume. The internal (hidden) momentum of the discrete Amperian magnetic dipoles is rigorously derived and properly included in the determination of the macroscopic force from the spatial averaging of the microscopic forces. Consequently, the Abraham/Einstein-Laub rather than the Minkowski macroscopic electromagnetic-field momentum density gives the total microscopic electromagnetic-field momentum in that volume. The kinetic momentum is found for the volume of the macroscopic continuum from Newton's relativistic equation of motion. It is shown that the difference between the kinetic and canonical momenta in a volume of the macroscopic continuum is equal to the sum of the ``hidden electromagnetic momenta'' within the electric-current magnetic dipoles and within hypothetical magnetic-current electric dipoles replacing the electric-charge electric dipoles in the classical macroscopic continuum. To obtain the correct unambiguous value of the force on a volume inside the continuum from the force-momentum expression, it is mandatory that the surface of that volume be hypothetically separated from the rest of the continuum by a thin free-space shell. Two definitive experiments performed in the past with time varying fields and forces are shown to conclusively confirm the Einstein-Laub/Abraham formulation over the Minkowski formulation.
Citation
Arthur D. Yaghjian, "Electromagnetic Force and Momentum in Classical Macroscopic Dipolar Media," Progress In Electromagnetics Research B, Vol. 103, 119-138, 2023.
doi:10.2528/PIERB23071801
References

1. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Butterworth Heinemann, 1984.

2. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

3. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2nd Ed., Addison-Wesley, 1962.

4. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, 1999.

5. Van Bladel, J. G., Electromagnetic Fields, 2nd Ed., Wiley/IEEE, 2007.
doi:10.1002/047012458X

6. Abraham, M., "Zur elektrodynamik bewegter Korper," Rend. Circ. Mat. Palermo, Vol. 28, 1-28, 1909.
doi:10.1007/BF03018208

7. Abraham, M., "Sull’elettrodinamica di Minkowski," Rend. Circ. Mat. Palermo, Vol. 30, 30-46, 1910.
doi:10.1007/BF03014862

8. Einstein, A. and J. Laub, "On the Pondermotive forces exerted on bodies at rest in the electromagnetic field," The Collected Papers of Albert Einstein, Vol. 2: The Swiss Years: Writings, 1900–1909, 339-348, Princeton Univ., 1990.

9. Minkowski, H., "Die Grundgleichungen fur die elektromagnetischen Vorgange in bewegten Korpern," Nachr. Ges. Wiss. Gottingen, 53-111, 1908, reprinted in Math. Annaln., Vol. 68, 472–575, 1910.

10. Griffiths, D. J., "Resource letter EM-1: Electromagnetic momentum," Am. J. Phys., Vol. 80, 7-19, 2012.
doi:10.1119/1.3641979

11. McDonald, K. T., "Bibliography on the Abraham-Minkowski debate (2017),", http://kirkmcd.princeton.edu/examples/.

12. Mansuripur, M., "Force, torque, linear momentum, and angular momentum in classical electrodynamics," Applied Physics A, Vol. 123, No. 653, 1-11, 2017.

13. Silveirinha, M. G., "Reexamination of the Abraham-Minkowski dilemma," Phys. Rev. A, Vol. 96, 033831, 2017.
doi:10.1103/PhysRevA.96.033831

14. Maxwell, J. C., A Treatise on Electricity and Magnetism, Unabridged 3rd Ed., Dover, 1954.

15. Yaghjian, A. D., "Reflections on Maxwell’s Treatise," Progress In Electromagnetics Research, Vol. 149, 217-249, 2014.
doi:10.2528/PIER14092503

16. Liu, H., L. Rondi, and J. Xiao, "Mosco convergence for HH (curl) spaces, higher integrability for Maxwell’s equations, and stability in direct and inverse EM scattering problems," J. Eur. Math. Soc., Vol. 21, 2945-2993, October 2019.

17. Yaghjian, A. D., "Maxwell’s definition of electric polarization as displacement," Progress In Electromagnetics Research M, Vol. 88, 65-71, 2020.
doi:10.2528/PIERM19090802

18. Yaghjian, A. D., "Classical power and energy relations for macroscopic dipolar continua derived from the microscopic Maxwell equations," Progress In Electromagnetics Research B, Vol. 71, 1-37, 2016.
doi:10.2528/PIERB16081901

19. Hansen, T. B. and A. D. Yaghjian, Plane-Wave Theory of Time-Domain Fields: Near-Field Scanning Applications, Wiley/IEEE Press, 1999.
doi:10.1109/9780470545522

20. Raab, R. E. and O. L. DeLange, Multipole Theory in Electromagnetism, Clarendon Press, 2005.

21. De Groot, S. R. and L. G. Suttorp, "Foundations of Electrodynamics," North-Holland, 1972.

22. Fano, R. M., L. J. Chu, and R. B. Adler, Electromagnetic Fields, Energy, and Forces, MIT Press, 1960.

23. Kinsler, P., A. Favaro, and M. W. McCall, "Four Poynting theorems," European J. Phys., Vol. 30, 983-993, July 2009.

24. Lorentz, H. A., "Weiterbildung der Maxwellischen Theorie: Elektronentheorie," Encyklopadie der Mathematischen Wissenschaften, Vol. 5, Part 2, 1904-1922, December 1903.

25. Einstein, A., "To Walter Dallenbach (1918)," The Collected Papers of Albert Einstein, Vol. 8: The Berlin Years: Correspondence, 1914–1918 (English Translation Supplement), item 565, Princeton Univ., 1999.

26. Yaghjian, A. D., "Extreme electromagnetic boundary conditions and their manifestation at the inner surfaces of spherical and cylindrical cloaks," Metamaterials, Vol. 4, 70-76, August–September 2010.
doi:10.1016/j.metmat.2010.03.006

27. Silveirinha, M. G., "Poynting vector, heating rate, and stored energy in structured materials: A first-principles derivation," Phys. Rev. B, Vol. 8, 235120, December 2009.
doi:10.1103/PhysRevB.80.235120

28. Yaghjian, A. D., "Power flow, energy density, and group/energy transport velocities in spatially dispersive media," Radio Science, Vol. 53, 303-313, March 2018.
doi:10.1002/2017RS006489

29. Yaghjian, A. D., "Force and hidden momentum for classical microscopic dipoles," Progress In Electromagnetics Research B, Vol. 82, 165-188, 2018.
doi:10.2528/PIERB18092007

30. Boyer, T. H., "Classical interaction of a magnet and a point charge: The Shockley-James paradox," Phys. Rev. E, Vol. 91, No. 013201, 1-11, January 2015.

31. Boyer, T. H., "Interaction of a magnet and a point charge: Unrecognized internal electromagnetic momentum," Am. J. Phys., Vol. 83, 433-442, May 2015.
doi:10.1119/1.4904040

32. Nieto-Vesperinas, M., J. J. Saenz, R. Gomez-Medina, and L. Chantada, "Optical forces on small magnetodielectric particles," Optics Express, Vol. 18, No. 11428, 1-16, May 2010.

33. Chaumet, P. and A. Rahmani, "Electromagnetic force and torque on magnetic and negative-index scatterers," Optics Express, Vol. 17, No. 2224, 1-11, February 2009.

34. Yaghjian, A. D., "Electric dyadic Green’s function in the source region," Proc. IEEE, Vol. 68, 248-263, February 1980; also Vol. 69, 282–285, February 1981.
doi:10.1109/PROC.1980.11620

35. Yaghjian, A. D., Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model, 3rd Ed., Springer, 2022.
doi:10.1007/978-3-031-06067-0

36. Lembessis, V. E., M. Babiker, C. Baxter, and R. Loudon, "Theory of radiation forces and momenta for mobile atoms in light fields," Phys. Rev. A, Vol. 48, 1594-1603, August 1993.
doi:10.1103/PhysRevA.48.1594

37. Baxter, C., M. Babiker, and R. Loudon, "Canonical approach to photon pressure," Phys. Rev. A, Vol. 47, 1278-1287, February 1993.
doi:10.1103/PhysRevA.47.1278

38. Barnett, S. M., "Resolution of the Abraham-Minkowski dilemma," Phys. Rev. Lett., Vol. 104, 070401, February 2010.
doi:10.1103/PhysRevLett.104.070401

39. Barnett, S. M. and R. Loudon, "The enigma of optical momentum in a medium," Phil. Trans. R. Soc. A., Vol. 368, 927-939, March 2010.
doi:10.1098/rsta.2009.0207

40. James, R. P., "Force on permeable matter in time-varying fields,", Ph.D. thesis, Stanford University, December 1968.

41. Walker, G. B., D. G. Lahoz, and G. Walker, "Measurement of the Abraham force in a barium titanate specimen," Can. J. Phys., Vol. 53, 2577-2586, December 1975.
doi:10.1139/p75-313

42. Marx, G. and G. Gyorgyi, "Der Energie-Impuls-Tensor des elektromagnetischen Feldes und die ponderomotorischen Krafte in Dielektrika," Acta Physica Academiae Scientiarum Hungaricae, Vol. 3, 213-242, April 1954.