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Electromagnetic Force and Momentum in Classical Macroscopic
Dipolar Media

Arthur D. Yaghjian*

Abstract—Using realistic classical models of microscopic electric-charge electric dipoles and electric-
current (Amperian) magnetic dipoles, it is proven that the Einstein-Laub macroscopic electromagnetic
force on a macroscopic-continuum volume of these classical dipoles equals the sum of the microscopic
electromagnetic forces on the discrete classical dipoles in that volume. The internal (hidden)
momentum of the discrete Amperian magnetic dipoles is rigorously derived and properly included
in the determination of the macroscopic force from the spatial averaging of the microscopic forces.
Consequently, the Abraham/Einstein-Laub rather than the Minkowski macroscopic electromagnetic-
field momentum density gives the total microscopic electromagnetic-field momentum in that volume.
The kinetic momentum is found for the volume of the macroscopic continuum from Newton’s relativistic
equation of motion. It is shown that the difference between the kinetic and canonical momenta in a
volume of the macroscopic continuum is equal to the sum of the “hidden electromagnetic momenta”
within the electric-current magnetic dipoles and within hypothetical magnetic-current electric dipoles
replacing the electric-charge electric dipoles in the classical macroscopic continuum. To obtain the
correct unambiguous value of the force on a volume inside the continuum from the force-momentum
expression, it is mandatory that the surface of that volume be hypothetically separated from the rest of
the continuum by a thin free-space shell. Two definitive experiments performed in the past with time
varying fields and forces are shown to conclusively confirm the Einstein-Laub/Abraham formulation
over the Minkowski formulation.

1. INTRODUCTION

Although the determination of the detailed fields and polarizations of atoms and molecules requires
quantum physics, most bulk materials below optical (or even higher) frequencies are accurately described
by the classical Maxwell macroscopic equations for dipolar continua [1, Sec. 77]. Moreover, the
microscopic (molecular) dipoles producing the macroscopic dipolarization can be adequately modeled
pragmatically by classical electric-charge electric dipoles and Amperian (circulating-electric-current)
magnetic dipoles, irrespective of their actual quantum origin. Indeed, most of the widely used physics
and engineering textbooks in electromagnetics, such as [1–5], confine themselves predominantly to
classical electromagnetic theory with classical models of electric and magnetic dipoles.

Nonetheless, since Maxwell published his electromagnetic equations, it has remained uncertain
as to how to correctly determine the time varying classical macroscopic force on a volume of
dipolar material subject to time varying electromagnetic fields. In particular, uncertainty continues
as to whether to use the Abraham definition [6, 7] of macroscopic electromagnetic-field momentum
(which is also contained in the Einstein-Laub [8] macroscopic force-momentum equation) or the
Minkowski definition [9] of macroscopic electromagnetic-field momentum (or some other definition
of macroscopic electromagnetic-field momentum), each of which leads to a different instantaneous
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time-domain macroscopic electromagnetic force (even when their predicted time-averaged macroscopic
electromagnetic forces are the same) [10–13].

A major obstacle preventing the determination of the correct macroscopic electromagnetic force
and electromagnetic-field momentum in polarized material approximated by a classical macroscopic
continuum has been the uncertainty of the relationship between the forces on individual dipoles and
the forces on a distribution of these dipoles composing the macroscopic continuum. A second major
obstacle has been the absence of a definitive determination of the electromagnetic time-domain force
on classical microscopic Amperian magnetic dipoles, which approximate the magnetic dipoles found in
nature. In this paper, these obstacles are overcome and it is determined that the correct macroscopic
electromagnetic force and electromagnetic-field momentum for classical macroscopic dipolar continua are
given by the Einstein-Laub macroscopic force and the Abraham/Einstein-Laub (rather than Minkowski
— or any other) macroscopic electromagnetic-field momentum. An underlying important requirement
of all the derivations is that the surface of any volume of the dipolar material under consideration lie
in a hypothetical thin free-space shell separating the volume from the rest of the material, so that the
volume contains a discrete number of dipoles.

2. MICROSCOPIC FORCE AND MOMENTUM

We assume that we are dealing with a macroscopic dipolar continuum (solid or fluid) whose molecules
or inclusions have electric and magnetic dipole moments that can be modeled electromagnetically by
classical microscopic electric charge and electric current with fields that obey the following Maxwell
differential equations in SI (mksA) units

∇× e(r, t) +
∂b(r, t)

∂t
= 0 (1a)

1

µ0
∇× b(r, t)− ϵ0

∂e(r, t)

∂t
= j(r, t) (1b)

∇ · b(r, t) = 0 (1c)

ϵ0∇ · e(r, t) = ϱ(r, t) (1d)

where e(r, t) and b(r, t) are the primary microscopic electric and magnetic fields at the position r and
time t; scalar ϱ(r, t) and vector j(r, t) are the microscopic electric-charge and electric-current densities;
and ϵ0 and µ0 are the free-space permittivity and permeability (1/

√
µ0ϵ0 = c, the free-space speed of

light). Note that since there are no polarization densities in (1), it follows that the microscopic electric
displacement vector d (secondary electric field) is given by d = ϵ0e and the microscopic secondary
magnetic field h is given by h = b/µ0. The charge and current densities, ϱ(r, t) and j(r, t), can
be considered continuous functions of r, even though they can form charges and currents of discrete
dipoles occupying indefinitely small regions of space.

With the help of these microscopic Maxwell equations, the microscopic Lorentz-force density

f(r, t) = ϱ(r, t)e(r, t) + j(r, t)× b(r, t) (2)

can be shown to satisfy the equation [2, Sec. 2.5]

f(r, t) + ϵ0
∂

∂t
[e(r, t)× b(r, t)] = ∇ · T (r, t) (3)

where the microscopic electromagnetic stress dyadic T (r, t) is defined with the help of the unit dyadic
I as

T = ϵ0

(
ee− 1

2
I|e|2

)
+

1

µ0

(
bb− 1

2
I|b|2

)
. (4)

If the Lorentz force is written as the time rate of change of a “Lorentz momentum” density gL(r, t), that
is, f(r, t) = ∂gL(r, t)/∂t, and gf (r, t) = ϵ0[e(r, t)×b(r, t)] designates the microscopic “electromagnetic-
field momentum” density, then (3) can be rewritten as

∇ · T (r, t) =
∂

∂t
[gL(r, t) + gf (r, t)] (5)



Progress In Electromagnetics Research B, Vol. 103, 2023 121

which shows that ∇ · T (r, t) is the time rate of change of the total microscopic electromagnetic
momentum density.

Integrating (5) over a volume V with surface S that encloses all the charge-current, and assuming
(as a thought experiment) that all the charge is held fixed so there is no current (just electrostatic
charge and field) until the charge is released at t = 0, we have gf (r, t ≤ 0) = 0 and

∫
V f(r, t ≤ 0)dV = 0

(since the charge and field are electrostatic for t ≤ 0). Then integrating over time from 0 to t yields

t∫
0

∫
V

∇ · T (r, t′)dV dt′ =

t∫
0

∫
S

n̂ · T (r, t′)dSdt′ =

∫
V

[gL(r, t) + gf (r, t)]dV (6)

where n̂ is the unit normal to S pointing out of V and
∫
V gL(r, t)dV =

∫ t
0

∫
V f(r, t′)dV dt′, which equals

0 for t ≤ 0. This equation shows that n̂ · T (r, t) represents the total electromagnetic momentum flow
in the −n̂ direction since n̂ points out of V . We see that if the surface S is far enough away that the
radiated fields have not had time to reach S in the time t, then the surface integral in (6) is zero, that
is, the total microscopic electromagnetic momentum in V is zero and∫

V

[gL(r, t) + gf (r, t)]dV = 0 (7)

for all time t as long as no radiation has crossed S. Since t can take on any value as long as the surface
S of V is chosen large enough, and both

∫
V gL(r, t ≤ 0)dV = 0 and gf (r, t ≤ 0) = 0, Equation (7)

expresses the conservation of total microscopic electromagnetic momentum in V and confirms that
indeed the microscopic electromagnetic-field momentum density gf (r, t) can be treated as a legitimate
physical momentum (because gL(r, t) is a physical electromagnetic-force-produced momentum).

So far, nothing has been said about the kinetic momentum of the charge carriers. Certainly, the
microscopic electromagnetic force density f(r, t) will, in general, change the kinetic momentum and
energy of the charge carriers in V but this does not affect the validity of the purely electromagnetic-
momentum relationships in (3)–(7). Kinetic momentum as well as “canonical momentum” is introduced
in Section 4, where the two momenta are shown to be related by “hidden electromagnetic momenta.”
It is assumed throughout that the macroscopic electromagnetic fields and momenta of the thermal
motion of the molecules are either negligible or lie outside of the bandwidth of the applied and induced
macroscopic electromagnetic fields and momenta.

3. MACROSCOPIC FORCE AND MOMENTUM

The ambiguity in the macroscopic force on a volume of a dipolar material can be demonstrated directly
from Maxwell’s homogeneous (no macroscopic free charge ρ and current J, only polarization) equations
for a macroscopic dipolar continuum [2, Ch. 1]

∇×E+
∂B

∂t
= 0 (8a)

∇×H− ∂D

∂t
= 0 (8b)

∇ ·B = 0 (8c)

∇ ·D = 0 (8d)

with the constitutive relations

D = ϵ0E+P, B = µ0(H+M). (9)

The vectors P and M are the macroscopic electric polarization and magnetic polarization
(magnetization) densities, and the (r, t) dependences of all the fields and polarizations have been
suppressed. The term “macroscopic” refers to fields and sources obtained by spatially averaging the
microscopic fields and sources at each instant of time over electrically small volume elements ∆V that (in
the medium) contain many discrete (isolated to an indefinitely small region of space) dipoles. The term
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“dipolar continuum”, which can be solid or fluid, simply means that the medium obeys the Maxwell
dipolar Equations in (8), (9). Thus, the combined term “macroscopic dipolar continuum” refers to a
medium composed of discrete dipoles that, upon spatial averaging, obeys, to a good approximation, the
Maxwell dipolar Equations in (8), (9).† The same macroscopic Maxwell Equations in (8), (9) can be
derived, for example, using electric-current (Amperian) magnetic dipoles or magnetic-charge magnetic
dipoles as long as [E,B] or [E, µ0H] are chosen as the initial primary fields in free space, respectively. In
fact, for the sake of mathematical simplicity, Maxwell uses ideal continuous differential volume elements
of magnetic-charge M to define the primary magnetic field H and then defines the secondary magnetic
field as B = µ0(H+M) — written here in modern SI units [14, Arts. 385, 386], [15]. For mathematical
rigor, it can be assumed that the fields and polarizations are piecewise Lipschitz continuous with possible
delta functions in the spatial derivatives across step discontinuities [16].

Adding the equations that result from crossing E or D into (8a) and B or H into (8b) to obtain
four possible electromagnetic-field momenta, then making use of the constitutive relations in (9), one
can obtain an unlimited number of different macroscopic force-momentum density equations depending
on the chosen stress dyadic. Restricting ourselves to five physically reasonable force-momentum density
equations, then integrating them over a volume V , one obtains∫

V

[
−(∇ ·P)E+

(
∇×M+

∂P

∂t

)
×B+ ϵ0

∂

∂t
(E×B)

]
dV

=

∫
V

∇ ·TAmpdV =

∫
S

n̂ ·TAmpdS (10a)

∫
V

[
P · ∇E+ µ0

∂P

∂t
×H+ µ0M · ∇H− 1

c2
∂M

∂t
×E+

1

c2
∂

∂t
(E×H)

]
dV

=

∫
V

∇ ·TELdV =

∫
S

n̂ ·TELdS (10b)

∫
V

[
P · ∇E+ µ0

∂P

∂t
×H+ µ0M · ∇H− 1

c2
∂M

∂t
×E− 1

2
∇(P ·E+ µ0M ·H) +

1

c2
∂

∂t
(E×H)

]
dV

=

∫
V

∇ ·TAdV =

∫
S

n̂ ·TAdS (10c)

∫
V

[
(∇×M)×B+

( 1

ϵ0
∇×P

)
×D+

1

2
∇
( 1

ϵ0
P ·D+M ·B

)
−∇·

( 1

ϵ0
DP+BM

)
+

∂

∂t
(D×B)

]
dV

=

∫
V

∇ ·TMdV =

∫
S

n̂ ·TMdS (10d)

† Contrary to what is sometimes stated in the historical literature, Maxwell (and not the “Maxwellians”) determined all the Equations
in (8) [14–17] for the mathematically defined fields of an ideal dipolar continuum where the polarization densities are continuous
functions of position throughout the medium rather than composed of discrete dipoles as in a macroscopic dipolar continuum [18].
It is unequivocally shown in [18], [19, Sec. 2.1.10] that Maxwell’s Equations in (8) for the mathematically defined fields of an ideal
dipolar continuum also apply (approximately) to macroscopic dipolar media if and only if the surfaces ∆S of the defining macroscopic
volumes ∆V lie in free space and do not intersect the discrete dipoles. It follows that the force and momentum expressions obtained
from (8) for a volume V with a surface S that lies within the polarization densities P or M are unambiguously defined if and only
if the surface S is placed within the free space of a hypothetical thin shell that separates V from the rest of the continuum (created
by removing the polarization densities within the shell without changing the adjacent polarization densities), so that the total bound
charge and current densities in every V are zero, that is, there are a discrete number of electric and magnetic dipoles in V [18],
[19, Secs. 2.1.1 and 2.1.10]. For an ideal Maxwellian continuum, the thin free-space shells ensure that any delta functions in the
polarization charge and current densities at the surface of the volume V are taken into account. This requirement for unambiguous
field and force-momentum expressions, namely that the surfaces of the volumes do not cut through the dipoles, is also stated by
Einstein and Laub [8], Landau and Lifshitz [1, Secs. 6 and 29], and De Groot and Suttorp [21, pp. 195–196]. These hypothetical thin
free-space shells containing S are assumed throughout the present paper and are crucial to a consistent formulation and determination
of dipolar electromagnetic force and momentum.
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V

[
−µ0(∇ ·M)H+

(
1

ϵ0
∇×P− µ0

∂M

∂t

)
×D+ µ0

∂

∂t
(D×H)

]
dV

=

∫
V

∇ ·THdV =

∫
S

n̂ ·THdS (10e)

with the respective macroscopic electromagnetic stress dyadics defined as

TAmp = ϵ0

(
EE− 1

2
I|E|2

)
+

1

µ0

(
BB− 1

2
I|B|2

)
(11a)

TEL =
(
DE− ϵ0

2
I|E|2

)
+
(
BH− µ0

2
I|H|2

)
(11b)

TA = TM =

(
DE− 1

2
I(D ·E)

)
+

(
BH− 1

2
I(B ·H)

)
(11c)

TH =
1

ϵ0

(
DD− 1

2
I|D|2

)
+ µ0

(
HH− 1

2
I|H|2

)
(11d)

where the subscripts Amp, EL, A, M, and H stand for the five macroscopic force-momentum Equations
in (10) with the Amperian (as defined in [22, Sec. A.1.6.4]), Einstein-Laub [8, Sec. 3], Abraham [6,
Eqs. (8) and (Va)], [7, Eq. (18b) with the electromagnetic-field momentum density vector defined
between Eqs. (21) and (22)], Minkowski [9, Eqs. (75), (94–97)], and Minkowski-with-H (as defined
herein by the present author) macroscopic electromagnetic-field momentum densities, namely ϵ0E×B,
E × H/c2 (for both Einstein-Laub and Abraham), D × B, and µ0D × H, respectively, and with the
corresponding stress dyadics in (10), (11). Note that the Abraham and Minkowski stress dyadics are
identical. (Four versions of the Poynting theorem can also be expressed with these four electromagnetic-
field momenta used as the energy flux vector [23].)

The forces on the left-hand sides of (10) are given in terms of the polarization densities P andM and
the primary fields as determined by the electromagnetic-field momentum vectors. The electromagnetic-
field momentum densities and electromagnetic stress dyadics labeled as Einstein-Laub, Abraham, and
Minkowski are defined by these authors in their original papers. The designation of “Amperian” given to
(10a) as well as its electromagnetic-field momentum density and electromagnetic stress dyadic is taken
from the textbook by Fano, Chu, and Adler [22, Sec. A.1.6.4]. I am not aware of any publication by
Ampere that contains the Equation (10a) or the corresponding electromagnetic-field momentum density
and electromagnetic stress dyadic in (10a), (11a). Interestingly, Lorentz obtained the macroscopic
electromagnetic force in terms of the Einstein-Laub stress dyadic and the Abraham electromagnetic-
field momentum before the papers by these authors, but for nonmagnetic material [24, Eqs. (157)–(158)].
The Equation in (10e) with D×H is included here for the sake of completeness in discussing the four
alternative forms of the electromagnetic-field momentum densities.

The volume integrals on the left-hand sides of (10) without the electromagnetic-field momentum
terms are the different macroscopic electromagnetic forces (FAmp, FEL, FA, FM, or FH) corresponding
to each formulation. According to Einstein and Laub [8], the equation containing FEL and the Abraham
macroscopic electromagnetic-field momentum E×H/c2 [6, 7] as well as the stress dyadic TEL is correct,
although Einstein later decided in favor of the Minkowski formulation over the Abraham formulation [25].
According to Minkowski [9, Eqs. (75), (94–97)], the equation with TM and D ×B as the macroscopic
electromagnetic-field momentum is correct. In fact, any one of these five Equations in (10) may
or may not be correct depending upon whether or not the macroscopic force FAmp, FEL,
FA, FM, or FH (or some other force) equals the sum of all the electromagnetic microscopic
forces in the volume V with its surface S in free space (or in a thin free-space shell
surrounding V).

With the surface S in (10) lying in a thin free-space shell separating V from the rest of the
continuum (see Footnote †), the value of each of the four macroscopic electromagnetic stress dyadics on
S is the same, and thus the value of each of their four surface integrals is the same and equals the value
of the total microscopic electromagnetic momentum flow across S into V , namely

∫
S n̂ ·T dS, because

the macroscopic fields equal the microscopic fields in the free-space shell of a sufficiently densely packed
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dipolar macroscopic continuum. This implies that the values of each of the four volume integrals on the
left-hand sides of (10) are also equal (provided any delta functions in ∇E, ∇H, ∇ · P, ∇ ·M, ∇× P,
and ∇×M at the interface between the material in V and the free space of the thin shell surrounding
V are properly included in the volume integrations).‡ Also, the four volume integrals of the divergences
of the stress dyadics in (10) are equal in value, provided any delta functions in the divergences of the
fields of the stress dyadics at the interface between the material in V and the free space of the thin shell
surrounding V are properly included in the volume integrations.§ Moreover, because the surface S of
V lies in a thin free-space shell, the ∇(P · E+ µ0M ·H) term in (10c) and the [∇(P ·D/ϵ0 +M ·B),
∇ · (DP/ϵ0 +BM)] terms in (10d) integrate to zero by means of the gradient and divergence integral
theorems (since P and M are zero in free space). Also, the divergence integral theorem converts the
−(∇ ·P)E and −µ0(∇ ·M)H terms in (10a) and (10d) to P · ∇E and µ0M · ∇H, respectively. In other
words, the five macroscopic force-momentum Equations in (10) can be reduced to four macroscopic
force-momentum equations such that

FAmp+ϵ0
d

dt

∫
V

E×BdV =FEL+
1

c2
d

dt

∫
V

E×HdV = FM+
d

dt

∫
V

D×BdV = FH + µ0
d

dt

∫
V

D×HdV

= F+ ϵ0
d

dt

∫
V

e× b dV =

∫
S

n̂ ·TdS =

∫
V

∇ ·TdV (12)

where, as defined above, FAmp, FEL = FA, FM, and FH denote the macroscopic-force volume integrals

on the left-hand sides of (10a), (10b), (10c), (10d), and (10e), respectively, and T can be any one of the
electromagnetic stress dyadics TAmp, TEL, TA = TM, TH, or T . The last force-momentum Equation
in (12) is the microscopic force-momentum equation obtained from (3) with the total microscopic force
in V given by

F(t) =

∫
V
f(r, t)dV (13)

where the surface S of V in the microscopic distribution of molecules meanders slightly to avoid cutting
through the dipoles so that S encloses a discrete number of dipoles. By bringing the time derivatives
outside of the integrals in (12), it is assumed that V and its surface S do not change with time. If they
do change with time, the partial time derivatives must remain inside the integral signs.

The volume forces in (10), (12) can now be written explicitly as

FAmp(t) =

∫
V

[
P · ∇E+

(
∇×M+

∂P

∂t

)
×B

]
dV (14a)

FEL(t) = FA(t) =

∫
V

[
P · ∇E+ µ0

∂P

∂t
×H+ µ0M · ∇H− 1

c2
∂M

∂t
×E

]
dV (14b)

FM(t) =

∫
V

[
(∇×M)×B+

( 1

ϵ0
∇×P

)
×D

]
dV (14c)

FH(t) =

∫
V

[
µ0M · ∇H+

(
1

ϵ0
∇×P− µ0

∂M

∂t

)
×D

]
dV (14d)

where again it is emphasized that any delta functions in the integrands across the free-space/continuum
interface of V must be included in the evaluation of the integrals in (14). The Einstein-Laub and

‡ For step functions u(n) in P and M and delta functions δ(n) in ∇E and ∇H, the integration of the resulting products u(n)δ(n)
at the interface is evaluated using values of P, M, E, and H that change rapidly but continuously across the interface in accordance
with Maxwell’s equations. This leads to

∫
uδdn =

∫
u(du/dn)dn = 1/2.

§ It should be noted that the tangential E and H fields need not be continuous across the free-space/continuum interface, for example,
if the continuum has “extreme” constitutive parameters [26] or if the continuum is strongly spatially dispersive [1, Sec. 103], [27, 28].
In strongly spatially dispersive continua, the Poynting vector does not necessarily represent the total energy flow. Nonetheless, all
the force-momentum expressions derived in the present paper hold for temporally and spatially dispersive dipolar continua. There
are no prohibitive restrictions on the constitutive relations except for their satisfying (9).
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Abraham electromagnetic forces are equal, which has to be the case, because they have the same
electromagnetic-field momentum and with S lying in free space all the electromagnetic-stress dyadic
integrals have the same value (as explained above).

It is now apparent what each of these forces in (14) represents physically. The Amperian force
FAmp(t) is equal to the sum of the forces exerted by the primary fields E and B on the electric-
charge polarization density P (or, alternatively, on the equivalent electric-charge density −∇ · P) and
on the equivalent electric-current density (∇ ×M + ∂P/∂t). The Einstein-Laub and Abraham forces
FEL(t) = FA(t) are equal to the sum of the forces exerted by the primary fields E and H on the electric-
charge polarization density P (or, alternatively, on the equivalent electric-charge density −∇ ·P), and
the magnetic-charge polarization density M (or, alternatively, on the equivalent magnetic-charge density
−µ0∇·M), and on the electric- and magnetic-polarization current densities ∂P/∂t and −µ0∂M/∂t. The
Minkowski force FM(t) is equal to the sum of the forces exerted by the primary fields D and B on the
equivalent electric- and magnetic-current densities ∇×M and ∇×P/ϵ0. The Minkowski-with-H force
FH(t) is equal to the sum of the forces exerted by the primary fields D and H on the magnetic-charge
polarization density M (or, alternatively, on the equivalent magnetic-charge density −µ0∇ ·M) and on
the equivalent magnetic-current density (∇×P/ϵ0 − µ0∂M/∂t).

For periodic fields, the time derivatives of all four macroscopic electromagnetic-field momenta
in (10), (12) average to zero, and all the time-averaged macroscopic/microscopic forces are equal to
the time-averaged value of the total macroscopic/microscopic electromagnetic momentum flow across S
into V , that is ⟨∫

V

∇ ·TdV

⟩
=

∫
V

∇ · ⟨T⟩dV =

⟨∫
S

n̂ ·TdS

⟩
=

∫
S

n̂ · ⟨T⟩dS

= ⟨FAmp⟩ = ⟨FEL⟩ = ⟨FA⟩ = ⟨FM⟩ = ⟨FH⟩ = ⟨F⟩ (15)

where ⟨ ⟩ denotes the time average. Still the surface S of V must lie in free space or in a hypothetical thin
free-space shell separating V from the rest of the continuum in order for the time-averaged macroscopic
forces in (15) to equal the sum of all the time-averaged microscopic forces ⟨F⟩ on the discrete microscopic
dipoles in V .

3.1. Forces on Individual Electric and Magnetic Dipoles

For general time varying (as opposed to time-averaged periodic) fields, the determination of the total
classical electromagnetic force on the microscopic (molecular) electric and magnetic dipole moments p
and m in an electrically small macroscopic volume element ∆V (with surface ∆S in free space enclosing
∆V ) used to define the macroscopic fields, polarizations, and forces in a dipolar medium requires
classical models to represent the molecular electric and magnetic dipole moments. The electrically
small ∆V contain many discrete molecular dipoles and thus it is implicitly assumed that the sources
and fields are bandlimited to a maximum frequency fmax with a minimum free-space or macroscopic-
continuum wavelength λmin such that the maximum dimension of ∆V is much less than λmin but with
∆V still containing many discrete molecular dipole moments. Thus, the maximum dimension of ∆V is
electrically small (kmax∆a ≪ 1, where kmax = 2π/λmin and ∆a is the circumscribing radius of ∆V ) and
the maximum dimension of the individual molecules is much smaller than the maximum dimension of
∆V . The electromagnetic fields from thermal motion of the molecules are assumed to produce negligible
macroscopic electromagnetic force and momentum within the operational bandwidth. The molecules
can be rotating, translating, and distorting as long as at each instant of time all their multipole moments
in each ∆V are negligible except for electric and magnetic dipole moments, and the accelerations of
the molecules are not large enough to produce significant radiation-reaction forces (more precisely,
radiation reaction forces of the molecules in ∆V are of higher order than ∆V , that is, they equal
o(∆V )). Then at each instant of time, the molecular dipole moments in each ∆V can be represented
by the dipole moments of classical models of electric and magnetic dipoles. Spatially averaging these
dipole moments and their fields at each instant of time using electrically small macroscopic volume
elements ∆V containing large numbers (in principle, approaching an infinite number) of these dipoles
yields macroscopic polarization densities and fields that are well-behaved functions of position and time.
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3.1.1. Electric Dipoles

Since all electric dipoles of molecules in nature are produced by the separation of electrical charge,
all realistic classical electric-dipole models give the same force exerted by external source-free fields
[Ee(r, t),Be(r, t)] because the total internal force on the electrically small classical electric dipole is
zero. That is, the quasielectrostatic force exerted on the positive charge by the negative charge is equal
and opposite the quasielectrostatic force exerted on the negative charge by the positive charge, so that
the total force exerted on a single electrically small electric dipole p(t) equals the force exerted directly
by the external fields. A straightforward derivation of this force from (2) gives [19, Eq. (2.156)], [29]

Fed(t) = p(t) · ∇Ee(r, t) + µ0
dp(t)

dt
×He(r, t) (16)

with the electrically small electric dipole located at a position r within ∆V at the time t. The external
polarization densities Pe and Me are assumed zero at the position of the dipole so that the source-
free external electric and magnetic fields at the position of the dipole are related by Be = µ0He and
De = ϵ0Ee. Note that the second term on the right-hand side of (16) is zero for static electric dipole
moments.

3.1.2. Magnetic Dipoles

Since all magnetic dipoles of molecules in nature are produced by electric currents (circulating electric

charges — as magnetic charge does not exist),∥ probably the simplest, most appealing, rigorously
analyzable stable classical model for the electric-current-produced (Amperian) microscopic magnetic
dipole moments of molecules are electrically small perfect electric conductors (PEC’s), where the term
PEC is used here in the sense of a superconductor whose internal electric and magnetic fields are zero
even in the case of static fields [29]. Magnetic dipole moments can be induced by externally applied
fields on a singly connected PEC (for example, on a PEC sphere) and a stable static magnetic dipole
moment can exist on a doubly connected PEC without an externally applied field, for example, on a
PEC wire loop. Notably, Weber and Maxwell [14, Arts. 836–845] explained both diamagnetism and
ordinary magnetism (paramagnetism or ferro(i)magnetism) by means of PEC wire loops with no initial
static electric current in the case of diamagnetism, and predominantly initial static electric current in
the case of ordinary magnetism [15, 18, 29]. Of course, electric dipole moments are also induced on
PEC’s by externally applied fields.

It is rigorously proven from (2) in [29] that, remarkably, when arbitrarily time varying external fields
are applied to electrically small PEC’s (for example, PEC wire loops), no matter how electrically small
the PEC’s, there is, in addition to a direct external electromagnetic-field force, an internal “hidden
momentum” electromagnetic force, namely (−1/c2)∂[m(t) × Ee(r, t)]/∂t, induced indirectly by the
external fields, where −m(t)×Ee(r, t) is the microscopic hidden momentum of the Amperian magnetic
dipole moment. The proof in [29] is crucial because it is the only rigorous derivation of
−m×E as the hidden momentum for Amperian dipoles subject to arbitrarily time varying
external fields.¶ Thus, the total force exerted by the external fields on a single electrically small PEC
Amperian magnetic dipole moment m(t) located at the position r is given by [19, Eq. (2.163)], [29]

Fmd(t) = µ0m(t) · ∇He(r, t)−
1

c2
dm(t)

dt
×Ee(r, t). (17)

This is the same force that would be exerted directly by the external fields on an electrically small
magnetic-charge magnetic dipole moment m(t) [19, Eq. (2.166)] (if magnetic charge existed), for which

∥ Numerous experiments indicate that the intrinsic magnetic dipole moments of elementary particles such as the electron, proton,
muon, and neutron are produced by circulating electric currents [4, p. 191].
¶ Unfortunately, the term “hidden momentum” has a somewhat mysterious connotation, whereas this momentum simply arises from
the force exerted on the electric charge-current of the PEC by the internal fields produced by the same electric charge-current [29].
Some authors, such as Boyer [30, 31], prefer the term “internal momentum” to “hidden momentum.” Although not mysterious, it
may be nonetheless surprising that this self-force internal momentum does not vanish for electrically small PEC’s. The reason for
this nonvanishing self force is that the electromagnetic quasistatic fields of the PEC do not uncouple into quasistatic electric fields
and quasistatic magnetic fields. The electromagnetic fields remain coupled to produce a “hidden momentum” force even as the size
of the PEC approaches zero [29]. Also, the derivation in [29] of (17) applies to electrically small conductors with finite conductivity
as well as PEC’s, except that conductors with finite conductivity cannot support an intrinsic static magnetic dipole moment.
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the internal forces cancel like those of the electric-charge electric dipole. Indeed, it is the same force
that Einstein and Laub [8] found assuming magnetic-charge models for the magnetic dipoles. (They
didn’t consider Amperian magnetic dipoles in their paper.) The “hidden-momentum” electromagnetic
force on an Amperian magnetic dipole has resulted in its total force exerted by the external electric and
magnetic fields equal to the force that would be experienced by a magnetic-charge magnetic dipole [29].
Note that the second term on the right-hand side of (17) is zero for static magnetic dipole moments.

The molecules of the dipolar material with different dipole moments p(t) and m(t) located at
different positions r at time t can be moving within the aforementioned acceleration limits that prevent
significant radiation-reaction forces (as long as p(t) and m(t) are the instantaneous dipole moments
in the laboratory frame of reference). Even if all the molecular dipoles are modeled by lossless
scatterers, when brought together to form a macroscopic continuum, energy losses can be exhibited
in the continuum by, for example, assuming the discrete lossless dipoles are connected to one another
and to the other molecules of the continuum by lossy, linear or nonlinear, compressible and torsional
springs. Thermal losses can occur within the springs. However, as mentioned above, the macroscopic
electromagnetic forces and momenta of thermal motion are assumed negligible within the operational
bandwidth. Although the molecules can be moving within the aforementioned acceleration limits that
prevent significant radiation-reaction forces, at any one time t, each of the defining electrically small
volume elements ∆V is chosen to contain a discrete number of dipoles (so that each ∆S lies in free
space). Of course, if the dipolar continuum is moving with constant velocity in free space, the dipole
moments, forces, and momenta may be determined more conveniently in an inertial reference frame
moving with the dipolar continuum, and the corresponding forces and momenta in the laboratory frame
can be found from the Lorentz relativistic transformations.

The sum of the electric and magnetic dipole forces in (16) and (17) is

Fd(t)=Fed(t)+Fmd(t)=p(t) ·∇Ee(r, t)+µ0
dp(t)

dt
×He(r, t)+µ0m(t) ·∇He(r, t)−

1

c2
dm(t)

dt
×Ee(r, t).

(18)
The main limitations of the expression for the force in (18) are that it neglects the quadrupole and
higher-order multipole moments of the charge-current distribution that produces the dipole moments p
and m; and, moreover, the magnetic dipole moment m depends on the origin of the coordinate system
(unless p = 0) such that a displacement ∆r of the origin changes the magnetic dipole moment by
(∆r× dp/dt)/2 [19, p. 10]. Both these limitations imply that the fractional error in the magnitude of
the force in (18) is O(kmaxa) where a is the radius of the sphere that circumscribes the charge-current
sources of p and m [20, pp. 3, 8, 11, 13].

For time-harmonic (e−iωt) dipoles and fields, the time-average of the force in (18) can be written
as

⟨Fd⟩ =
1

2
Re [pω · ∇E∗

eω − iωµ0pω ×H∗
eω + µ0mω · ∇H∗

eω + iωµ0ϵ0mω ×E∗
eω] (19)

where the subscript ω denotes the frequency of the time-harmonic vectors. With the dipoles lying
outside the sources of the external fields, vector identities and the Maxwell curl equations combine to
reduce (19) to

⟨Fd⟩ =
1

2
Re [(∇E∗

eω) · pω + µ0(∇H∗
eω) ·mω] . (20)

This expression for the time-averaged harmonic force on dipoles has been obtained in [32, 33] by
evaluating the stress dyadic of the fields of electrically small (ka ≪ 1, k = ω/c and a is the radius
of the circumscribing sphere of the particle) magnetodielectric particles illuminated by external fields.
The expressions in [32, 33] also include a term equal to k4

√
µ0ϵ0 p × m∗/(6π), which, however, is

O[(ka)3] times the dipolar forces in (20) for magnetodielectric dipoles induced by external fields and
thus would generally be negligible compared to forces arising from the origin-dependence of m and the
quadrupole moments induced by the external fields in the magnetodielectric particles. As mentioned
above, these neglected forces are O(ka) times the dipolar forces in (20), and they were not included
in the derivation in [32, 33], which assumed origin-independent m and only dipole fields in the stress
dyadic. Consequently, the k4

√
µ0ϵ0 p×m∗/(6π) term is superfluous.
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3.2. Macroscopic Dipolar Forces Determined from Microscopic Dipole Forces

To obtain an expression for the macroscopic dipolar forces from the microscopic electric-dipole and
magnetic-dipole forces in (16) and (17), consider a distribution of many of these dipoles at each instant
of time t in a defining electrically small macroscopic volume element ∆V with its surface ∆S in free
space surrounding ∆V ; see Footnote †. The forces between all the isolated electrically small electric-
charge electric dipoles and the PEC combined electric and magnetic dipoles in ∆V are quasistatic forces
that cancel.+ In addition, the radiation-reaction forces of the molecules in ∆V are assumed to be of
higher order than ∆V , that is, o(∆V ). Thus only the external fields from sources outside ∆V will
produce an appreciable net electromagnetic force on the dipoles in ∆V . The spatially averaged electric
polarization of all the p’s in ∆V is P(r, t) so that the external force on this electric polarization (all
the discrete dipole moments p) in ∆V is given by (16) with P∆V substituted for p, namely

∆Fed(r, t) =

[
P(r, t) · ∇Ee(r, t) + µ0

∂P(r, t)

∂t
×He(r, t)

]
∆V (21)

where r is a point in ∆V .
The external electric and magnetic fields in (21) are the fields in ∆V with P and M in ∆V removed,

that is, the cavity fields, Ee = Ec = E− Es and He = Hc = H−Hs where E and H are the spatially
averaged macroscopic electric and magnetic fields and Es and Hs are the electric and magnetic fields
produced by the equivalent surface charge and current densities n̂ ·P and M× n̂ at the outer surface of
the free-space shell that surrounds the electrically small ∆V [19, p. 46]. (Incidentally, for spherical ∆V ,
the Es and Hs are approximately uniform throughout ∆V so that ∇Es and ∇Hs are approximately
zero throughout ∆V .) Because these surface charge and current densities have equal and opposite
counterpart surface charge and current densities for the volume elements adjacent to ∆V , they create
equal and opposite forces on the electrically small ∆V and its adjacent volume elements that cancel
when the forces on all the ∆V in a volume V are summed to obtain the integrated force in the dipolar
material in V ∗; thus the Es and Hs fields can be ignored and (21) becomes effectively for volume
elements inside the dipolar macroscopic continuum

∆Fed(r, t) =

[
P(r, t) · ∇E(r, t) + µ0

∂P(r, t)

∂t
×H(r, t)

]
∆V (22)

a relatively uncomplicated well-defined expression for the macroscopic force density, which when
integrated to get the force on the electric polarization density P in a volume V , gives the sum of
the microscopic forces on all the discrete dipole moments p in V .

Similarly, (17) yields the macroscopic force on the macroscopic magnetic polarization
(magnetization) M in ∆V

∆Fmd(r, t) =

[
µ0M(r, t) · ∇He(r, t)−

1

c2
∂M(r, t)

∂t
×Ee(r, t)

]
∆V (23)

that equals the sum of the microscopic forces on the discrete magnetic dipole moments m in ∆V .
By the same argument led from (21) to (22), the force density in (23) can be reexpressed effectively

as

∆Fmd(r, t) =

[
µ0M(r, t) · ∇H(r, t)− 1

c2
∂M(r, t)

∂t
×E(r, t)

]
∆V (24)

+ The electric and magnetic dipole moments p and m induced by external fields on PEC’s are not isolated, but the force on the
electrically small PEC has already been proven [29], as explained above, to be equal to the sum of the electric- and magnetic-dipole
forces in (16) and (17). An alternative heuristic way of showing that the isolated molecules in ∆V do not exert a net force on each
other is to consider each molecule lying in a small spherical hole within a spherical ∆V of uniform polarization which is separated
by a thin free-space spherical shell from the rest of the macroscopic continuum. For an electrically small ∆V , the quasistatic fields
in the hole produced by the polarization in ∆V will be zero (the uniform fields within the hole that are produced by the surface
polarization charges and currents on the surfaces of ∆V and the hole cancel to o(∆V ) [34]) and thus no force will be exerted by the
polarization in ∆V on the dipole moments of the molecules within the hole.
∗ The volume elements ∆V that border the polarization/free-space interface of V have one side without an adjacent volume element.
This merely changes the values of Es and Hs but not the cancellation argument leading from (21) to (22). However, it is emphasized
that the uncanceled equivalent surface charge/current densities at the surface of V contribute to the force in (25a) on the volume V
of dipolar material since these forces are taken into account by delta functions in ∇E and ∇H in the integrand of (25a).
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for the purpose of integrating over a volume V to get the macroscopic force on M equal to the sum of
the microscopic forces on the discrete magnetic dipole moments m in V . It is emphasized that (23)–(24)
holds for both diamagnetic and paramagnetic/ferro(i)magnetic magnetization M.

Within a volume V > ∆V with the surface S of V lying in a thin free-space shell, the volume
elements in (22) and (24) used to define the electromagnetic forces in V can change shape slightly and
be shifted so that r can take any value in V . (Because each ∆V contains a discrete number of dipoles,
there will be a small spatial jitter in this macroscopic force density with the jitter becoming smaller with
the larger the number of dipoles per unit volume. This jitter can be smoothed by various techniques
such as moving averages.) Thus the total macroscopic electromagnetic force Feℓ(t) on the macroscopic
polarization densities P and M in a volume V is determined approximately by integrating the sum of
the macroscopic electric-dipole and magnetic-dipole force densities in (22) and (24) to get

Feℓ(t)=

∫
V

[
P(r, t) · ∇E(r, t) + µ0

∂P(r, t)

∂t
×H(r, t) + µ0M(r, t) · ∇H(r, t)− 1

c2
∂M(r, t)

∂t
×E(r, t)

]
dV

(25a)
which, with the surface S of V in free space and any delta functions in the spatial derivatives across
the free-space/continuum interface of V properly included in the integrations (see Footnote ‡), equals
the sum of the microscopic forces on the discrete dipole moments p and m in V , that is

Feℓ(t) = F(t). (25b)

(The integration in (25a) becomes a more accurate representation of the sums in (22) and (24) as the
number of dipoles per cubic minimum wavelength becomes larger and ∆V becomes electrically smaller.)
We see from (14b) and (25a), (25b) that

Feℓ(t) = FEL(t) = F(t). (25c)

Since we have proven that the macroscopic electromagnetic force Feℓ = FEL equals the sum of the
microscopic electromagnetic forces in V , namely F in (13), we also have from (12) that

1

c2
d

dt

∫
V

E×H dV = ϵ0
d

dt

∫
V

e× b dV (26)

that is, the macroscopic and microscopic electromagnetic-field momenta in V are equal. If the total
electromagnetic momentum entering the volume is zero, that is,

∫
S n̂ · TdS = 0 (for example, if the

surface S lies outside all the fields), then (12) and (25c) show that the macroscopic force on the volume
V of material is given by

Feℓ(t) = FEL(t) = F(t) = − 1

c2
d

dt

∫
V

E×H dV ̸= − d

dt

∫
V

D×B dV. (27)

That is, we have shown that, with no net electromagnetic momentum crossing S, the macroscopic
electromagnetic force exerted by an electromagnetic pulse on a volume V of dipolar material is given by
the negative time derivative of the Abraham macroscopic electromagnetic-field momentum and not by the
negative time derivative of the Minkowski (or any other) macroscopic electromagnetic-field momentum.
Integrating the equality in (27) over a time interval shows that the macroscopic electromagnetic
impulse applied to the charge-current in this volume V plus the change in the Abraham macroscopic
electromagnetic-field momentum in V during that time interval is zero if no net electromagnetic
momentum enters or leaves the volume V .

The macroscopic electromagnetic force in (25) is the Einstein-Laub [8] macroscopic electromagnetic
force in (10b), (14b) with the associated Abraham/Einstein-Laub electromagnetic-field momentum
E × H/c2 in (10b), (10c). However, Einstein and Laub simply assume microscopic magnetic-charge
magnetic dipoles analogously to microscopic electric-charge electric dipoles even though magnetic dipoles
in matter are produced by circulating electric currents. They then generalize without proof their
force expressions on microscopic electric and magnetic dipoles to the corresponding expressions with
macroscopic electric and magnetic polarization densities and fields. Also, Einstein and Laub did not
indicate or speculate on the possible existence of internal momentum (today referred to as hidden



130 Yaghjian

momentum) induced by the external fields applied to Amperian (circulating-electric-current) magnetic
dipoles. In fact, Einstein [25, p. 591] later wrote that the electromagnetic tensor that he and Laub had
derived was “wrong” and that the correct tensor was that of Minkowski.

Mansuripur [12] also simply assumes that “magnetism is no longer associated with an electric
current density, but rather with bound magnetic-charge and bound magnetic-current densities” to argue
for the Einstein-Laub macroscopic force (and the associated Abraham macroscopic electromagnetic-
field momentum) but, again, without proving that the macroscopic force is equal to the sum of the
microscopic electromagnetic forces on realistic models of electric and magnetic dipoles in V . On the one
hand, assuming magnetism is produced by magnetic-charge separation denies the experimental results
of modern physics that magnetic charge and magnetic-charge dipoles do not exist in nature; and on the
other hand, avoids treating the problem of magnetic polarization properly because of the past difficulties
with dealing rigorously with realistic models of Amperian magnetic dipoles.

Here in the present work, we have rigorously proven that the macroscopic electromagnetic force in
(14b), (25) on the volume V of macroscopic electric and magnetic polarization P and M is equal to the
sum of the electromagnetic forces on the discrete microscopic electric-charge electric dipoles and electric-
current (Amperian) magnetic dipoles in V using realistic classical models for the discrete microscopic
electric and magnetic dipoles. The macroscopic force in (14b), (25) was first obtained in [19, Eq. (2.173)]
using the particular example of a PEC sphere to argue for the hidden momentum from arbitrary time
varying fields rather than the general proof given in [29] for the hidden-momentum force on arbitrarily
shaped microscopic PEC models of magnetic dipoles. In summary, it is proven that for these
realistic classical models of electric and magnetic dipoles found in nature, the physically
meaningful macroscopic electromagnetic force and momentum (that is, those equal to
the sum of the microscopic-dipole electromagnetic forces and momenta, respectively)
are the Einstein-Laub macroscopic electromagnetic force FEL(t) in (14b), (25) and the
Abraham/Einstein-Laub macroscopic electromagnetic-field momentum density E × H/c2.
They are related to the integrals of the stress dyadics as given in (12), namely

FEL(t) +
1

c2
d

dt

∫
V

E×HdV =

∫
S

n̂ ·TdS =

∫
V

∇ ·TdV. (28)

Also, as explained above, the macroscopic polarization densities P and M in (25a) can be lossless or
lossy, independent of whether the microscopic models of the discrete dipoles are lossless or lossy, and
their constitutive relations are unrestricted except for obeying (9).

The rigorously derived macroscopic force density in (25a) shows that internal (hidden) momentum
force is produced by the applied fields in macroscopic magnetization M as well as in the
microscopic momentum of the Amperian dipoles comprising the magnetization, and, in particular,
in the magnetization of artificial molecules (inclusions) of metamaterials containing magnetic (or
magnetodielectric) material. That is, the force density in the magnetization M of inclusions is given
by −∂M/∂t×E/c2 rather than M× (∂E/∂t)/c2 and, thus, includes a macroscopic hidden momentum
−∂(M×E)/(c2∂t). This macroscopic hidden momentum for the magnetization M is a consequence of
the microscopic hidden momentum which is rigorously found [29] for the classical conductor Amperian
models of the discrete magnetic dipoles comprising M and is not lost in the averaging process required
to obtain the macroscopic magnetization M from the microscopic Amperian magnetic dipole moments
m.

4. KINETIC AND CANONICAL MOMENTA

It is emphasized that the force Feℓ(t) = FEL(t) in (12), (14b), (25) equals the total electromagnetic
force on realistic models of the microscopic dipoles in V . If the dipoles are rigidly attached to a rigid
lattice structure or any other rigid material with a fixed volume inside V whose surface S in free space
surrounds all of the material, then this electromagnetic force is transferred to the rigid material. Also,
if the rigid material inside V is held fixed, the opposite force must be exerted by whatever outside agent
(other than the given applied electromagnetic fields) is holding the rigid material inside V fixed. On
the other hand, even if the outer surface of the material inside V is held fixed by an outside agent, but
the charge carriers accelerate appreciably (yet not enough to produce radiation-reaction forces greater
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than o(∆V )) with respect to the fixed surface of material inside V or they collide with other molecules
of the material that can accelerate with respect to its fixed surface, producing a total change in kinetic
momentum Gk(t) of the material inside V , then the force Fag(t) exerted by the outside agent holding
the surface of the material inside V fixed will satisfy Newton’s relativistic equation of motion

Fag(t) + Feℓ(t) = Fag(t) + FEL(t) =
dGk(t)

dt
(29)

provided the total radiation reaction force of the accelerating macroscopic polarization is negligible [35].
Thus Fag(t) can be expressed with the help of (28) as

Fag(t) =
dGk(t)

dt
+

1

c2
d

dt

∫
V

E×H dV −
∫
S

n̂ ·TdS (30)

where dGk(t)/dt is the time rate of change of the kinetic momentum of all the material inside the
volume V . If outside the surface S of V there is only free space, the volume V in (30) can be replaced
by the volume V∞ of all space such that T is zero on S∞ for a finite pulse. Then (30) becomes simply

Fag(t) =
dGk(t)

dt
+

1

c2
d

dt

∫
V∞

E×H dV. (31)

Silveirinha [13, Eq. (10b)] obtains a form of (30) with the microscopic electromagnetic-field momentum
replacing the macroscopic electromagnetic-field momentum in (30) but without proving which
macroscopic force (namely, FEL) equals the sum of the microscopic forces, or which macroscopic
electromagnetic-field momentum (namely, E×H/c2) equals the sum of the microscopic electromagnetic-
field momenta. For the Minkowski formulation (which gives neither the correct macroscopic
electromagnetic force nor the correct electromagnetic-field momentum), E×H/c2 in the volume integral
of (30) would be replaced by D×B.

In general, Fag(t) in (29)–(31) is the total outside-agent force exerted on the material inside any
volume V outside of which exists only free space even if the material inside V is allowed to accelerate
and deform, as long as the macroscopic fields and polarizations are those in the moving material inside
V (as seen in the laboratory frame) and Gk(t) is the total change in kinetic momentum of the material
inside V . The momentum Gk(t) can be considered as a macroscopic kinetic momentum equal to the
change in the total kinetic momentum of all the material (charged and uncharged particles) inside V .
This change in total kinetic momentum is brought about by the applied electromagnetic and outside-
agent forces. The Equation (30) says that the outside-agent force exerted on the material inside the
volume V equals the time rate of change of the kinetic plus electromagnetic-field momentum inside V
plus the time rate of change of the total electromagnetic momentum entering V ; recall that n̂ is the
unit normal pointing out of V . Similarly, (31) says that the outside-agent force exerted on the material
in the volume V equals the time rate of change of the kinetic momentum of the material in V plus the
time rate of change of the electromagnetic-field momentum throughout all space V∞. Unfortunately,
dGk(t)/dt is usually unknown and may be difficult to determine, although in some cases where the
material has a high rigidity and an outside-agent force keeps the surface of the volume V of material
fixed, it may be reasonable to assume dGk(t)/dt is negligible. If no outside force is supplied by an agent
to the material inside the volume V , then Fag(t) = 0 and we have from (29)–(31)

FEL(t) =
dGk(t)

dt
=

∫
S

n̂ ·TdS − 1

c2
d

dt

∫
V

E×HdV = − 1

c2
d

dt

∫
V∞

E×H dV. (32)

Although it has been shown that the Einstein-Laub macroscopic force and Abraham/Einstein-Laub
macroscopic electromagnetic-field momentum are the ones that equal the sum of the microscopic forces
and the sum of the microscopic electromagnetic-field momenta, respectively, it may be revealing to relate
the Minkowski and Einstein-Laub macroscopic forces and electromagnetic-field momenta. Toward this
end, use (12) to write

FEL(t)− FM(t) =
d

dt

∫
V

D×B dV − 1

c2
d

dt

∫
V

E×HdV. (33)
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If the outside-agent force is zero, FEL = dGk/dt and (33) can be rewritten as

dGk(t)

dt
− FM(t) =

d

dt

∫
V

D×B dV − 1

c2
d

dt

∫
V

E×HdV. (34)

Furthermore, expressing the Minkowski force in terms of the time rate of change of a “Minkowski-force
momentum,” that is

FM(t) =
dGM(t)

dt
(35)

one obtains
dGk(t)

dt
− dGM(t)

dt
=

d

dt

∫
V

D×B dV − 1

c2
d

dt

∫
V

E×H dV (36)

or, assuming that the initial macroscopic fields are zero, and Gk(t) is the change in kinetic momentum
from the initial kinetic momentum, GM(0) = 0, then

Gk(t)−Gcan(t) =

∫
V

(
D×B−E×H/c2

)
dV =

∫
V

(
P×B−M×E/c2

)
dV (37)

where the Minkowski-force momentum GM(t) has been renamed Gcan(t) to correspond to the
microscopic “canonical momentum” of Lembessis et al. and Baxter et al. [36, 37] and to the macroscopic
“medium canonical momentum” of Barnett and Loudon [38, 39]. Specifically, (37) corresponds to the
macroscopic equation [39, Eq. (4.4)] and to the microscopic equation [36, Eq. (50)], where it should be
noted that [37] treats only single discrete electric dipoles (and no magnetic dipoles).

In the context of the macroscopic formulation of the present paper, the vector (P×B−M×E/c2)
in (37) is the sum of the macroscopic hidden momentum density (−M × E/c2) of Amperian
(circulating-electric-current) magnetic dipoles and the macroscopic hidden momentum density (P×B) of
hypothetical circulating-magnetic-current electric dipoles replacing the electric-charge electric dipoles.♯

Thus, the difference between the Abraham and Minkowski electromagnetic forces in (33) equals the sum
of the hidden-momentum forces on these electric-current magnetic dipoles and hypothetical magnetic-
current electric dipoles. This makes sense because the E and H primary fields of the Abraham
formulation require electric- and magnetic-charge electric and magnetic dipoles, respectively, (that
exhibit no hidden momentum) to derive the Maxwell equations and constitutive relations in (8), (9),
whereas the D and B primary fields of the Minkowski formulation require electric- and magnetic-current
magnetic and electric dipoles, respectively, (that exhibit the hidden momentum in (37)) to derive the
Maxwell equations and constitutive relations in (8), (9). However, neither (37) nor the references [36–
39] prove, as is done in the above analysis of the present paper, that it is the time derivative of the
Abraham/Einstein-Laub macroscopic electromagnetic-field momentum, and not the time derivative of
the Minkowski macroscopic electromagnetic-field momentum, along with any one of the stress dyadics
in (4), (11), that determine the correct macroscopic electromagnetic force FEL on a volume of bulk
dipolar material (namely the force that equals the sum of the microscopic electromagnetic forces on
realistic discrete electric-charge electric dipoles and electric-current (Amperian) magnetic dipoles in
that volume of material). It should also be emphasized that in the context of classical physics, the
canonical momentum is defined by (33)–(37) and [39, Eq. (4.4)], whereas fundamentally the “canonical
momentum” is a concept that arises in quantum electrodynamical scattering of light by an atom [36, 37].
Lembessis et al. [36, 37] refer to the microscopic quantum electrodynamical canonical momentum as a
“Röntgen-type interaction term.” However, none of these papers, or any other previous papers, as
far as I am aware, have associated the difference between the kinetic and canonical momenta with

♯ The P × B can be shown to be the macroscopic hidden momentum density of hypothetical circulating-magnetic-current electric
dipoles in the same way that it is shown from [29] that −M×E/c2 is the macroscopic hidden momentum density of circulating-electric-
current magnetic dipoles. In the absence of any outside-agent force, the kinetic momentum is simply equal to the electromagnetic-force
momentum imparted to the dipoles by the applied fields [FEL(t) = Feℓ(t) = dGk(t)/dt]. Therefore, the canonical (Minkowski-force)
momentum is simply the direct momentum (that is, the electromagnetic momentum without the internal “hidden” momentum)
imparted by the applied fields to electric and magnetic dipole moments created by magnetic and electric circulating current,
respectively [GM(t) = Gcan(t) = Gk(t) −

∫
V (P × B − M × E/c2)dV ], where

∫
V (P × B − M × E/c2)dV is the internal “hidden”

momentum of the magnetic- and electric-circulating-current dipoles in V .
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the sum of the internal “hidden” electromagnetic momentum of electric-current magnetic dipoles and
magnetic-current electric dipoles.

5. EXPERIMENTAL VERIFICATION OF THE EINSTEIN-LAUB/ABRAHAM
FORMULATION

Through the years there have been many experiments done to measure the time-averaged macroscopic
electromagnetic radiation force, especially the force on mirrors and on the surfaces or membranes
between two fluids. None of the time-averaged force experiments can distinguish between the Einstein-
Laub/Abraham formulation and the Minkowski formulation because there is no difference between the
two for time-averaged forces, as shown in Section 3.

However, there are two noteworthy experiments that have measured the time varying force on
dipolar-material bodies, namely on a magnetodielectric toroid (James [40]) and on a high-permittivity
dielectric toroid (Walker et al. [41]). The James magnetodielectric toroid experiment verifies the
Abraham macroscopic electromagnetic-field momentum as well as the Einstein-Laub electromagnetic
force obtained herein, and the Walker et al. high-permittivity dielectric toroid experiment verifies the
Einstein-Laub macroscopic electromagnetic force obtained herein.

5.1. The Magnetodielectric Toroid

A simplified schematic of the magnetodielectric ferrite toroid taken from James’s thesis [40] (with
Shockley as his thesis advisor) is shown in Fig. 1. Actually, two different ferrite toroids were used in
this experiment, one with a relative permeability of µr ≈ 16 and a relative permittivity of ϵr ≈ 7, the
other with a relative permeability of µr ≈ 43 and a relative permittivity of ϵr ≈ 7.6. A current
I0 = I sin(ω ± ω0)t flows in the axial (z) direction through the center of the toroid. A voltage
V0 = V sinωt is applied between the metalized inner and outer circular cylindrical surfaces of the
toroid. The value of the beat frequency ω0/(2π) was kept at about 3 kHz, which approximately equaled
the mechanical resonant frequency of the combined toroid and piezoelectric measurement transducer
that was in contact with the toroid. The value of ω/(2π) was varied from 10 to 32 kHz. This voltage and
current produce time varying magnetic fields in the azimuthal (ϕ) direction and time varying electric
fields in the radial (r) direction. Because the voltage and current are time varying, each produce
both a radial electric field and an azimuthal magnetic field in the toroid. These quasielectrostatic
and quasimagnetostatic fields are relatively straightforward to determine. The voltage sets up a
radial quasielectrostatic field which in turn produces an azimuthal quasimagnetostatic field that varies
asymmetrically with z across the toroid. Similarly, the current sets up an azimuthal quasimagnetostatic
field which in turn produces a radial quasielectrostatic field that varies asymmetrically with z across
the toroid. In all, one has a total time varying radial electric field Er(r, z, t) and a total time varying
azimuthal magnetic field Hϕ(r, z, t). These electric and magnetic fields produce an axial (z-directed)

Figure 1. Simplified schematic of the magnetodielectric ferrite toroid used in the James experiment [40].
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force on the toroid that James was able to measure with a piezoelectric transducer. The predominant
measurable time-varying force occurs at the resonant beat frequency ω0/(2π).

The basic equation that James uses to decide experimentally between the Abraham and Minkowski
electromagnetic-field momenta corresponds to our Equation (30), that is

Fag(t) =
dGk(t)

dt
+

d

dt
Gf (t)−

∫
S

n̂ ·TdS (38)

where Fag(t) = Fag(t)ẑ is James’s transducer-measured force on the toroid. The surface integral of

the stress dyadic T in (38) is evaluated analytically over the surface S in free space just outside the
material of the toroid, using the theoretically determined expressions for Er(r, z, t) and Hϕ(r, z, t), to
give a force contribution in the axial (z) direction. The kinetic-momentum force dGk(t)/dt turns out to
be effectively negligible at the ω0 resonant beat frequency that is the dominate variation of the measured
force Fag(t), so that (38) effectively reduces to

Fag(t) =
d

dt
Gf (t)−

∫
S

n̂ ·TdS. (39)

The Gf (t) = Gf (t)ẑ is the electromagnetic-field momentum, which equals
∫
V E × H/c2dV for the

Abraham momentum and
∫
V D×BdV for the Minkowski momentum with V the volume of the toroid

inside S. Since D = ϵ0ϵrE and B = µ0µrH, the Minkowski electromagnetic-field momentum equals µrϵr
times the Abraham electromagnetic-field momentum, so that (39) can be rewritten as

Fag(t) =

{
1

µrϵr

}
1

c2
d

dt

∫
V

E×H dV −
∫
S

n̂ ·TdS (40)

where the 1 in the curly bracket applies to the Abraham electromagnetic-field momentum and the µrϵr
in the curly bracket applies to the Minkowski electromagnetic-field momentum. The values of µrϵr were
about 112 and 327 for the two different ferrite toroids that were used.

James’s measurements of Fag(t) in (40) along with his theoretically evaluated stress-dyadic force
reveal that the Abraham electromagnetic-field momentum satisfies the equation in (40) much more
closely than the Minkowski electromagnetic-field momentum. This is a strong confirmation of the
correctness of the Abraham electromagnetic-field momentum because both the electric and magnetic
fields producing the forces and momenta are time varying and the ratio of the two momenta are equal
to 112 for one of the toroids and 327 for the other. Since the right-hand side of the experimentally
verified (top) Equation in (40) is equal to the negative of the Einstein-Laub force, as seen in (14b), (28),
James’s experimental results also confirm the Einstein-Laub electromagnetic force as opposed to the
Minkowski electromagnetic force. Implicitly, these experimental results for magnetodielectric toroids in
favor of the Abraham macroscopic electromagnetic-field momentum also confirm the existence of the
internal “hidden-momentum” electromagnetic force within Amperian magnetic dipoles.

5.2. The High-Permittivity Dielectric Toroid

The paper by Walker et al. [41] replaces the magnetodielectric toroid in Fig. 1 with a high-permittivity
dielectric toroid (ϵr ≈ 3620, µr = 1), and replaces the time varying axial current I0(t) with an axial
static magnetic field H0 = H0ẑ penetrating the entire toroid. The voltage V0(t) remains a sinusoidal
time varying voltage applied across inner and outer conducting surfaces of the toroid. Similarly to the
magnetodielectric toroid, this voltage produces a radial quasielectrostatic field Er(r, t) which in turn
produces an azimuthal quasimagnetostatic field Hϕ(r, z, t) that varies asymmetrically with z across the
toroid. The azimuthal torque produced by the fields Er(r, t), Hϕ(r, z, t), and H0 on the toroid was
measured using a torsion pendulum arrangement. Since the asymmetric azimuthal quasimagnetostatic
field Hϕ(r, z, t) exerts no azimuthal torque on the toroid, this field can be ignored and, indeed, the
authors do not mention or determine this field.

The theory in the paper by Walker et al. begins with an expression for force density taken from
Marx and Gyorgyi [42]

(µrϵr − 1)

c2
d

dt
(E×H) =

(ϵr − 1)

c2
d

dt
[Er(r, t)H0]ϕ̂ (41)
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which is just the azimuthal (ϕ̂) component of our Einstein-Laub force density in (14b) because all the
force densities in the integrand of (14b) are zero except for

µ0
∂P

∂t
×H =

(µrϵr − 1)

c2
d

dt
(E×H) =

(ϵr − 1)

c2
d

dt
[Er(r, t)H0]ϕ̂ (42)

and for P · ∇E, which is in the radial direction and thus can be ignored.
Essentially, Walker et al. evaluated Er(r, t) theoretically and integrated the right-hand side of (42)

around the toroid to get the total value of the torque exerted on the toroid by the fields. They then
found that this theoretically predicted value of the torque agreed to within 10% with the measured
value of the torque. This is a highly significant result since the corresponding value of the azimuthal
torque determined by the Minkowski force in (14c) is equal to zero. Thus the experimental results of
Walker et al. conclusively rule out the Minkowski macroscopic electromagnetic force while confirming
the Einstein-Laub macroscopic electromagnetic force.

6. CONCLUSION

We consider a macroscopic (characterized by sources and fields spatially averaged at each instant of
time over electrically small volume elements) dipolar continuum (a medium obeying the Maxwell dipolar
equations) with molecular dipole moments realistically modeled by classical microscopic discrete electric-
charge electric dipoles and circulating-electric-current magnetic dipoles (assuming the dipoles are
densely packed enough in the defining electrically small volume elements that the macroscopic fields and
polarizations can be sufficiently smoothed). It is rigorously proven that the sum of the electromagnetic
forces on a volume of these realistic classical microscopic dipoles is equal to the macroscopic force given
by the Einstein-Laub formulation and, thus, the macroscopic Abraham/Einstein-Laub electromagnetic-
field momentum, rather than the macroscopic Minkowski electromagnetic-field momentum (or the two
other possible electromagnetic-field momenta), gives the correct electromagnetic-field momentum equal
to the sum of the electromagnetic-field momentum of all the microscopic dipoles in the volume. For
periodic fields, the time derivatives of all four macroscopic electromagnetic-field momenta within the
volume average to zero and all four of the associated time-averaged macroscopic forces are equal to the
time-averaged total microscopic/macroscopic electromagnetic momentum flow into the volume.

A key to deriving the correct macroscopic electromagnetic force on a volume of dipolar material
from the sum of the individual electromagnetic forces on the discrete microscopic dipoles within the
volume of material is to realize that the macroscopic polarizations, fields, and forces within a volume
V can be defined consistently and unambiguously if and only if the surface S of the volume V (like
the surfaces ∆S of the averaging volume elements ∆V ) does not intersect the dipoles so that there
are a discrete number of dipoles inside the surface S (like inside the surfaces ∆S). This implies that
the surface S of the volume V in the macroscopic dipolar continuum must lie in a hypothetical thin
free-space shell separating V from the rest of the continuum. With this unambiguous definition of
fields and polarization densities using macroscopic volume elements surrounded by hypothetical thin
free-space shells, it follows that the forces produced on the volume elements by the surface-charge and
surface-current densities on either side of the thin shells cancel so that the macroscopically defined
fields can be used in the force expressions rather than the cavity fields that exist in the absence of each
polarized volume element.

Another key to the derivation of the correct macroscopic electromagnetic force is the rigorous proof
given in [29] that for arbitrarily time varying externally applied electromagnetic fields, the force on a
conductor model of a microscopic electric-current magnetic dipole, such as a wire loop, contains an
internal-momentum (the so-called hidden-momentum) electromagnetic force (induced indirectly by the
externally applied fields) that, when added to the direct force exerted by the externally applied fields,
equals the same electromagnetic force that an equal-moment, microscopic magnetic-charge magnetic
dipole would experience in the same externally applied fields. (Past derivations of this “hidden
momentum” have been confined to quasistatic rather than arbitrarily time varying electromagnetic
fields and dipole moments; see [29] for details.) Moreover, after the force on the microscopic dipoles
is spatially averaged in a macroscopic volume element ∆V to get the macroscopic force density, this
macroscopic force density on the magnetization contains the analogous macroscopic hidden-momentum
force density.
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With the correct macroscopic electromagnetic force determined for a volume of dipolar material
in an applied external electromagnetic field, the time rate of change of the total kinetic momentum
of the material in the volume can be determined through Newton’s relativistic equation of motion
in terms of the correct macroscopic electromagnetic force and any other forces applied to the
material in the volume by an outside agent. The difference between the kinetic momentum and the
canonical momentum (which, in classical physics, is the same as the Minkowski-force momentum) in
a volume of dipolar material is shown to equal the sum of the “hidden electromagnetic momentum”
of the circulating-electric-current magnetic dipoles and the “hidden electromagnetic momentum” of
hypothetical circulating-magnetic-current electric dipoles replacing the electric-charge electric dipoles
within the volume of material. These electric-current magnetic dipoles and magnetic-current electric
dipoles that exhibit hidden momentum are required in the Minkowski (D,B) formulation of Maxwell’s
equations and the constitutive relations, as opposed to the Abraham (E,H) formulation that requires
electric- and magnetic-charge dipoles, which exhibit no hidden momentum.

Most experiments in the past that measured radiation forces in media revealed only the time-
averaged electromagnetic forces for which there is no difference between the Einstein-Laub/Abraham
and Minkowski formulations. However, two well-conceived and well-conducted past experiments that
measured the time varying macroscopic electromagnetic forces and momenta are shown to decidedly
confirm the force and momentum expressions of the Einstein-Laub/Abraham formulation and to rule
out those of the Minkowski formulation.
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