Vol. 103
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-09-17
Optimizing 1D Dielectric Electromagnetic Bandgap (d -EBG) Structures Using Multistage Genetic Algorithm (MS-GA) and Considering Parameter Variations
By
Progress In Electromagnetics Research B, Vol. 103, 1-18, 2023
Abstract
An optimization method utilizing a multistage genetic algorithm (MS-GA) and considering parameter variations has been proposed to obtain optimal design of one-dimensional dielectric bandgap(1D D-EBG) structures with a few periods in small packaging power distribution networks. One-dimensional finite method (1D FEM) is used to improve computational efficiency and iteration speed. MS-GA consists of 3 stages: In stage 1, the population was initialized by Hamming distance, and the fitness was calculated to determine the number of EBG period. In stage 2, genetic manipulation and sensitivity analysis were used to improve local search ability and obtain preliminary results. In stage 3, cubic spline interpolation and local integral were used to reconstruct the fitness evaluation function considering parameter deviation, adjust the results and obtain the optimal parameters. Three optimized target frequency bands with center frequencies of 2.4 GHz, 3.5 GHz and 28 GHz were optimized, and Pearson coefficient was used to analyze the correlation between the parameters to better understand the influence of parameter deviation on the optimization results. The achieved results meet the optimization object within the allowable range of parameter errors, and the parameter constraints were successfully met for all three designs, with their final dimensions below 20 mm. Three-dimensional full-wave simulation software was used to simulate and analyze the stopband bands, and the simulation results were consistent with the calculation results.
Citation
Chouwei Guo, Yusheng Hu, Lijin He, and Mengyuan Niu, "Optimizing 1D Dielectric Electromagnetic Bandgap (d -EBG) Structures Using Multistage Genetic Algorithm (MS-GA) and Considering Parameter Variations," Progress In Electromagnetics Research B, Vol. 103, 1-18, 2023.
doi:10.2528/PIERB23071001
References

1. Guang, T. L., R. W. Techentin, and B. K. Gilbert, "High-frequency characterization of power/ground-plane structures," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 5, 562-569, May 1999.
doi:10.1109/22.763156

2. Cui, W., J. Fan, Y. Ren, H. Shi, J. L. Drewniak, and R. E. DuBroff, "DC power-bus noise isolation with power-plane segmentation," IEEE Trans. Electromagn. Compat., Vol. 45, No. 2, 436-443, May 2003.
doi:10.1109/TEMC.2003.811296

3. Xu, M., T. H. Hubing, J. Chen, T. P. van Doren, J. L. Drewniak, and R. E. DuBroff, "Power-bus decoupling with embedded capacitance in printed circuit board design," IEEE Trans. Electromagn. Compat., Vol. 45, No. 1, 22-30, Feb. 2003.
doi:10.1109/TEMC.2002.808075

4. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "DC power-bus noise isolation with power-plane segmentation," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

5. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A novel TEM-waveguide using uniplanar compact photonic band-gap (UC-PBG) structure," APMC 1999, Vol. 2, Cat. No. 99TH8473, 323-326, 1999.

6. Chappell, W. J. and X. Gong, "Wide bandgap composite EBG substrates," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2744-2750, Oct. 2003.
doi:10.1109/TAP.2003.817569

7. Pani, P. R., R. K. Nagpal, R. Malik, N. Gupta, et al. "Design of planar EBG structures using cuckoo search algorithm for power/ground noise suppression," Progress In Electromagnetics Research M, Vol. 28, 145-155, 2013.
doi:10.2528/PIERM12121108

8. Kim, T. H., M. Swaminathan, A. E. Engin, and B. J. Yang, "Electromagnetic band gap synthesis using genetic algorithms for mixed signal applications," IEEE Trans. Adv. Packag., Vol. 32, No. 1, 13-25, Feb. 2009.
doi:10.1109/TADVP.2008.2005841

9. Kovacs, P., Z. Raida, Techentin, and B. K. Gilbert, "Global evolutionary algorithms in the design of electromagnetic band gap structures with suppressed surface waves propagation," Radioeng., Vol. 19, No. 1, 122-128, 2010.

10. Tripathi, J. N., N. K. Chhabra, R. K. Nagpal, R. Malik, and J. Mukherjee, "Damping the cavity-mode anti-resonances' peaks on a power plane by swarm intelligence algorithms," ISCAS 2012, 361-364, 2012.

11. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas Propag. Mag., Vol. 37, No. 2, 7-15, Apr. 1995.
doi:10.1109/74.382334

12. Vasconcelos, J. A., R. Saldanha, L. Krahenbuhl, and A. Nicolas, "Genetic algorithm coupled with a deterministic method for optimization in electro-magnetics," IEEE Trans. Magn., Vol. 33, No. 2, 1860-1863, Mar. 1997.
doi:10.1109/20.582645

13. Villegas, F., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2424-2435, Sep. 2004.
doi:10.1109/TAP.2004.834071

14. Caorsi, S., A. Costa, and M. Pastorino, "Microwave imaging within the second-order Born approximation: Stochastic optimization by a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 22-31, Jan. 2001.
doi:10.1109/8.910525

15. Venkatarayalu, N., T. Ray, and Y.-B. Gan, "Multilayer dielectric filter design using a multiobjective evolutionary algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3625-3632, Nov. 2005.
doi:10.1109/TAP.2005.858565

16. Karatzidis, D. I., N. V. Kantartzis, G. G. Pyrialakos, T. V. Yioultsis, and C. S. Antonopoulos, "Genetic optimization with mixed-order prism macroelements for 3-D metamaterial multilayered structures," IEEE Trans. Magn., Vol. 55, No. 6, 1-4, Jun. 2019.
doi:10.1109/TMAG.2019.2904646

17. Choi, K., D.-H. Jang, S.-I. Kang, J.-H. Lee, T.-K. Chung, and H.-S. Kim, "Hybrid algorithm combing genetic algorithm with evolution strategy for antenna design," IEEE Trans. Magn., Vol. 52, No. 3, 1-4, Mar. 2016.
doi:10.1109/TMAG.2015.2486043

18. Xiao, F., D. Yan, and L. Sun, "Optimization design of ground plane PBG structure of T-shape microstrip line by improved FGA," ICMMT, Vol. 3, 1561-1564, Apr. 2008.

19. Zhu, H.-R., J.-B. Wang, Y.-F. Sun, and X.-L. Wu, "An improved genetic algorithm for optimizing EBG structure with ultra-wideband SSN suppression performance of mixed signal systems," IEEE Access, Vol. 8, 26129-26138, 2020.
doi:10.1109/ACCESS.2020.2971355

20. Zhu, H.-R., J.-B. Wang, Y.-F. Sun, X.-L. Wu, and J.-F. Mao, "A novel automatically designed EBG structure by improved GA for ultrawideband SSN mitigation of system in package," Packag. Manuf. Technol., Vol. 10, No. 1, 123-133, Jan. 2020.
doi:10.1109/TCPMT.2019.2955823

21. Vieira, D. G., D. A. G. Vieira, W. M. Caminhas, and J. A. Vasconcelos, "Hybrid approach combining genetic algorithm and sensitivity information extracted from a parallel layer perceptron," IEEE Trans. Magn., Vol. 41, No. 5, 1740-1743, May 2005.
doi:10.1109/TMAG.2005.846039

22. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel planar PBG structure for size reduction," IEEE Microw. Wirel. Compon. Lett., Vol. 16, No. 5, 269-271, May 2006.
doi:10.1109/LMWC.2006.873492

23. Barth, S. and A. K. Iyer, "The MTM-EBG as a rigorous multiconductor model of the UC-EBG and approaches for miniaturization," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2822-2831, Apr. 2022.
doi:10.1109/TAP.2021.3137499

24. Wang, W., X.-Y. Cao, W.-Y. Zhou, and L. Tao, "A novel compact uni-planar electromagnetic band-gap (UC-EBG) structure," ICMMT, Vol. 4, No. 4, 1634-1636, Apr. 2008.

25. Toyota, Y., A. E. Engin, T. H. Kim, M. Swaminathan, and S. Bhattacharya, "Size reduction of electromagnetic bandgap (EBG) structures with new geometries and materials," ECTC, Jun. 2006.

26. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley and Sons, 2015.

27. McKinley, S. and M. Levine, "Cubic spline interpolation," College of the Redwoods, Vol. 45, No. 1, 1049-1060, 1998.

28. Shi, P., K. Huang, Y. Li, and , "Photonic crystal with complex unit cell for large complete band gap," Opt. Commun., Vol. 285, No. 13-14, 3128-3132, 2012.
doi:10.1016/j.optcom.2012.02.069