Vol. 102
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-08-15
Diffraction of a Plane Electromagnetic Wave by a Circular Aperture in a Conducting Screen of Finite Thickness
By
Progress In Electromagnetics Research B, Vol. 102, 99-114, 2023
Abstract
The paper represents a rigorous solution to the problem of diffraction of a normally incident plane electromagnetic wave by a circular hole in a perfectly conducting screen of arbitrary thickness, obtained using the eigenmode technique with allowance for the presence of a plane dielectric layer on a thick substrate behind the screen, which can play a part of a radiation detector. The main goal of the work is to describe the effect of diffractionlensless focusing in circular apertures and to determine the conditions of its appearance in the near zone of small holes, when its radius, the thickness of a screen and a dielectric layer are of the order of the wavelength.
Citation
Vladimir Serdyuk, "Diffraction of a Plane Electromagnetic Wave by a Circular Aperture in a Conducting Screen of Finite Thickness," Progress In Electromagnetics Research B, Vol. 102, 99-114, 2023.
doi:10.2528/PIERB23061503
References

1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 12, 667-669, 1998.
doi:10.1038/35570

2. Garcia-Vidal, F. G., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, No. 1, 729-787, 2010.
doi:10.1103/RevModPhys.82.729

3. Garcia de Abajo, F. J., "Light transmission through a single cylindrical hole in a metallic film," Opt. Express, Vol. 10, No. 25, 1475-1484, 2002.
doi:10.1364/OE.10.001475

4. Vitrant, G., S. Zaiba, B.Y. Vineeth, T. Kouriba, O. Ziane, O. Stephan, J. Bosson, and P. L. Baldeck, "Obstructive micro diffracting structures as an alternative to plasmonicsnano slits for making efficient microlenses," Opt. Express, Vol. 20, No. 24, 26542-26547, 2012.
doi:10.1364/OE.20.026542

5. Goncalves, M. R., W. B. Case, A. Arie, and W. P. Schleich, "Single-slit focusing and its representations," Applied Physics B, Vol. 123, No. 4, 1-22, 2017.
doi:10.1007/s00340-017-6675-1

6. Serdyuk, V. M., S. V. von Gratowski, and V. V. Koledov, "Diffraction focusing of electromagnetic radiation by transmission through sub-wavelength nanoapertures," Semiconductors, Vol. 54, No. 14, 1814-1815, 2020.
doi:10.1134/S1063782620140250

7. Serdyuk, V. M., "Theoretical investigation of electromagnetic diffraction focusing in the near zone of a sub-wavelength aperture," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 50, 101017, 2022.
doi:10.1016/j.photonics.2022.101017

8. Born, M. and E. Wolf, Principles of Optics, University Press, Cambridge, 1997.

9. Popov, E., M. Neviere, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, "Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen," J. Opt. Soc. Am. A, Vol. 24 , No. 2, 339-358, 2007.
doi:10.1364/JOSAA.24.000339

10. Serdyuk, V. M., "Diffraction of a plane electromagnetic wave by a slot in a conducting screen of arbitrary thickness," Technical Physics, Vol. 50, No. 8, 1076-1083, 2005.
doi:10.1134/1.2014542

11. Serdyuk, V. M., "Method of additive regularization of field integrals in the problem of electromagnetic diffraction by a slot in a conducting screen, placed before a dielectric layer," Progress In Electromagnetics Research B, Vol. 83, 129-151, 2019.
doi:10.2528/PIERB18102906

12. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7&8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

13. Roberts, A., "Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen," J. Opt. Soc. Am. A, Vol. 4, No. 10, 1970-1983, 1987.
doi:10.1364/JOSAA.4.001970

14. Palumbo, L. J. and A. M. Platzeck, "Diffraction by a circular aperture: A new approach," J. Opt. Soc. Am. A, Vol. 4, No. 5, 839-842, 1987.
doi:10.1364/JOSAA.4.000839

15. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan, New York, 1971.

16. Chew, W. V., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

17. Stratton, J. A., Electromagnetic Theory, McGraw-Hill , New York, 1941.

18. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Golem, Boulder, 1969.

19. Mathews, J. and R. L. Walker, Mathematical Methods of Physics, W. A. Benjamin, New York, 1964.

20. Tolstov, G. P., Fourier Series, Dover Publications, New York, 1976.

21. Sokolov, A. V., Optical Properties of Metals, American Elsevier Publishing, 1967.