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Diffraction of a Plane Electromagnetic Wave by a Circular Aperture
in a Conducting Screen of Finite Thickness

Vladimir M. Serdyuk*

Abstract—The paper represents a rigorous solution to the problem of diffraction of a normally incident
plane electromagnetic wave by a circular hole in a perfectly conducting screen of arbitrary thickness,
obtained using the eigenmode technique with allowance for the presence of a plane dielectric layer on a
thick substrate behind the screen, which can play a part of a radiation detector. The main goal of the
work is to describe the effect of diffraction lensless focusing in circular apertures and to determine the
conditions of its appearance in the near zone of small holes, when its radius, the thickness of a screen,
and a dielectric layer are of the order of the wavelength.

1. INTRODUCTION

The classical problem of electromagnetic wave diffraction by a slot or a circular aperture in a conducting
screen is of great interest in the context of the recent discovery of two interesting phenomena: the
occurrence of an anomalously high local intensity of the transmitted radiation [1–3] and the appearance
of lensless focusing of the diffraction slot image, when the effective width of this image turns out to
be several times smaller than the transverse dimensions of the aperture [4, 5]. An effective theoretical
method for searching the region of existence of the latter effect was proposed in [6, 7]†. It is obvious
that these two phenomena are interconnected, since a high local intensity of the field can take place
when it is concentrated in a small region, and these phenomena are noticeably manifested only for
microapertures in the near zone, when the aperture dimensions, the screen thickness, and the distance
from it to the plane of the diffraction pattern observation have dimensions on the order of one to several
wavelengths of radiation. At great distances from the aperture, much greater than its dimensions, the
diffraction field turns out to be divergent, and the smaller an aperture is, the stronger divergence is.
This result is quite consistent with the conclusions of the traditional theory of optical diffraction by
apertures in perfectly conducting screens, which uses the Kirchhoff integral and Green’s function [8].
This approximate approach showed itself well in describing diffraction fields for great apertures in the
far and middle zones. But in the near zone, directly near the aperture, it can give a distorted pattern
of the field, because it comes from unrealistically idealized and simplified boundary conditions on the
aperture. It should be noted that the authors [9] attempted to circumvent one of the limitations of
the theory, considering the case of not infinite, as usual, but finite conductivity of the screen material.
However, they used the single scattering approximation of perturbation theory, and therefore the results
of [9] can be applied only to great apertures, when their dimensions are much greater than the diffracting
radiation wavelength.
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Therefore, in order to elaborate an adequate picture of anomalous phenomena in the near zone
of microapertures, it is necessary to utilize a rigorous solution of the Maxwell equations that would
completely satisfy all the exact boundary conditions at the aperture boundaries and on the surfaces of
the conducting screen, in which this aperture is cut. For a slot aperture of rectangular geometry in a
perfectly conducting screen, such a solution by the eigenwave technique was presented in [10, 11], and
on its basis, in [7], the study of anomalous high-intensity phenomena and lensless diffraction focusing
of radiation near microsized slots was carried out. It turned out that the focusing effect takes place
only for TE polarization of the incident plane wave, for which the electric vector is parallel to the edges
of the slot, while for orthogonal TM polarization, it practically does not manifest itself. In addition,
the magnitude of this effect and its presence in general are very sensitive to changes in the geometric
parameters of the diffraction system, and above all, in the width of the slot and the thickness of the
conducting screen. In this connection, one is very interested in the case of a circular aperture, for which
the existence of the effect of anomalously high intensity of the diffraction field was also confirmed [2, 3],
but the phenomenon of lensless focusing has not been studied at all. Until now, a large body of attempts
to construct an electromagnetic diffraction theory for circular apertures was made, proceeding from a
static approximation suitable for apertures much smaller than the wavelength [12], or, conversely, from
the approximation of large apertures using the Green’s function method, the Kirchhoff integral, or other
similar techniques (for example, [8, 13, 14]), which, strictly speaking, cannot be used for describing the
field in the near zone. In this paper, we present an exact theory of diffraction by a circular hole, free
from such limitations. Our simulation uses the eigenmode, or mode-matching technique [15, 16]. With
its help, a rigorous solution of the Maxwell equations is obtained, and the conditions of the effect of
diffraction focusing in a circular aperture are determined.

2. SOLUTION OF DIFFRACTION PROBLEM

Let us consider the normal incidence of a plane electromagnetic wave of unit amplitude on a perfectly
conducting screen of finite thickness 2d with a circular hole of radius R (Fig. 1). Let this wave be
linearly polarized, so that in the three-dimensional Cartesian coordinate system xyz, fixed to the axis

(a) (b)

Figure 1. Geometry of the problem of wave diffraction by a circular aperture in a conducting screen,
(a) in the absence of dielectrics and (b) in the presence of a thin dielectric layer on the substrate behind
the screen.
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of the hole, the spatial components of the fields of such a wave can be written as follows:

E(inc)
y = eikz; H(inc)

x = −eikz (1)

and the rest of the components are zero. Here k = ω/c is the wave number, c the speed of light in
vacuum, and the exponential factor exp(−iωt), determining dependence of the field on time t, is omitted.
We shall solve the problem of determining the total field in all space as a result of wave incidence onto
a screen with a hole, and for this purpose it is convenient to use the cylindrical coordinate system ρφz,
for which z is the axis of the symmetry of the problem, coinciding with the axis of the hole (Fig. 1). In
this coordinate system, the normal components of the electric and magnetic fields of the incident wave

are still zero (E
(inc)
z = 0, H

(inc)
z = 0), and the radial and azimuthal components have the form:

E(inc)
ρ = eikz sinφ; E(inc)

φ = eikz cosφ; H(inc)
ρ = −eikz cosφ; H(inc)

φ = eikz sinφ (2)

Our diffraction system (Fig. 1) is symmetrical along the azimuthal coordinate φ, independent of the
presence or absence of a parallel plane dielectric behind the screen, so the diffraction field must reproduce
exactly the symmetry of the incident field (2) with respect to this coordinate:

Eρ,z (ρ, φ, z) = Ẽρ,z (ρ, z) sinφ; Eφ (ρ, φ, z) = Ẽφ (ρ, z) cosφ; (3a)

Hρ,z (ρ, φ, z) = H̃ρ,z (ρ, z) cosφ; Hφ (ρ, φ, z) = H̃φ (ρ, z) sinφ (3b)

As it is known [17, 18], in the cylindrical coordinate system, an azimuthally symmetrical electromagnetic
field can be expressed in terms of two independent complex scalar functions u(ρ, z) and ū(ρz) of the
radial and axial coordinates ρ and z. In our case of single symmetry over the total azimuthal angle 2π,
such expressions have the form:

Ẽρ (ρ, z) = − (ik/ρ)u+
∂2ū

∂ρ∂z
; H̃ρ (ρ, z) =

∂2u

∂ρ∂z
− (ik/ρ) εū; (4a)

Ẽφ (ρ, z) = −ik
∂u

∂ρ
+ ρ−1∂ū

∂z
; H̃φ (ρ, z) = −ρ−1∂u

∂z
+ ikε

∂ū

∂ρ
; (4b)

Ẽz (ρ, z) =
∂2ū

∂ρ∂z
+ k2εū; H̃z (ρ, z) =

∂2u

∂ρ∂z
+ k2εu, (4c)

where ε is the complex dielectric permittivity of the medium. Fields (3), (4) represent solutions
of the Maxwell equations, if the scalar functions u(ρ, z) and ū(ρz) satisfy the cylindrical Helmholtz
equation [17, 18]: (

∂2

∂ρ2
+ ρ−1 ∂

∂ρ
− ρ−2 +

∂2

∂z2
+ k2ε

){
u
ū

}
= 0. (5)

Two scalar functions u and ū in (4) have the meaning of the normal components of the Hertz vectors [18]
and actually describe two various polarizations of an azimuthally symmetrical electromagnetic field.
It can be said that the first polarization, determined by the function u, corresponds to H (or TE )
polarization of the field in a rectangular coordinate system, and the second one, which is determined by
the function ū, is an analogue of E (or TM ) polarization, since at the plane interface z =const between
two dielectric media the amplitude reflection and refraction coefficients for the first polarization are
the same as for the plane-wave H polarization with an electric vector perpendicular to the plane of
incidence, and for the second one they are as for E polarization with a magnetic vector orthogonal to
this plane.

In order to obtain Expressions (2) from Equations (3) and (4) for the incident plane wave, we must
determine the following scalar functions for that:

u(inc) = (iρ/k)eikz; ū(inc) = 0. (6)

The field equations must be supplemented with boundary conditions. There are standard vanishing
conditions for the tangential components of the electric field on the surface of a perfect conductor and
continuity conditions for tangential components of the electric and magnetic fields at the boundaries
between dielectrics. In our case, such conditions correspond to the zero values of the components Eρ

and Eφ (3) on the plane surfaces of the screen z = ±d outside the aperture (at ρ > R), and to the
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equality of the tangential components Eρ, Eφ and Hρ, Hφ on both sides of the upper (z = −d) and
lower (z = +d) boundaries of the hole, where the conductor is absent (at ρ < R):

Ẽρ(ρ,∓d) = 0; Ẽφ(ρ,∓d) = 0; at ρ > R; (7)

Ẽρ(ρ,−d− 0) = Ẽρ(ρ,−d+ 0); Ẽφ(ρ,−d− 0) = Ẽφ(ρ,−d+ 0)

H̃ρ(ρ,−d− 0) = H̃ρ(ρ,−d+ 0); H̃φ(ρ,−d− 0) = H̃φ(ρ,−d+ 0)

Ẽρ(ρ,+d− 0) = Ẽρ(ρ,+d+ 0); Ẽφ(ρ,+d− 0) = Ẽφ(ρ,+− d+ 0)

H̃ρ(ρ,+d− 0) = H̃ρ(ρ,+d+ 0); H̃φ(ρ,+d− 0) = H̃φ(ρ,+d+ 0)

 at ρ < R (8)

where the symbol “0” denotes an infinitesimally small positive value. In addition, the finite thickness
of the conductive screen dictates the requirement for the tangential components of the electric field Eφ

and Ez to be vanish on the inner conducting walls of the circular hole ρ = R (Fig. 1):

Ẽφ(R, z) = 0; Ẽz(R, z) = 0 at − d < z < d. (9)

If a plane dielectric layer on the substrate presents behind the screen (Fig. 1(b)), then we should
satisfy the additional continuity conditions for the tangential field components at the plane boundaries
of this layer z = d+H and z = d+H + h:

Ẽρ,φ(ρ, d+H − 0) = Ẽρ,φ(ρ, d+H + 0); H̃ρ,φ(ρ, d+H − 0) = H̃ρ,φ(ρ, d+H + 0); (10a)

Ẽρ,φ(ρ, d+H + h− 0) = Ẽρ,φ(ρ, d+H + h+ 0); (10b)

H̃ρ,φ(ρ, d+H + h− 0) = H̃ρ,φ(ρ, d+H + h+ 0); (10c)

for any ρ. Furthermore, in diffraction problems for infinite regions of field propagation, additional
obvious conditions are imposed usually, which require phase divergence of the total field and non-
increase in its total amplitude at propagation to infinity [8, 17, 18].

We shall seek the solution of the diffraction problem for various spatial field components in the form
of (3), (4), where the scalar field functions u(ρ, z) and ū(ρz) will be presented as superposition of partial
solutions of the Helmholtz Equation (5) with indefinite amplitude coefficients, determined then during
the solution of the boundary problem. To do this, we shall use the eigenmodes (or mode-matching)
technique [15, 16]. It utilizes partition of the entire field propagation region into several subregions of
simple geometry filled with an identical medium. In our case, the partition sought is obvious: as such,
we should take the half-space in front of the screen (z ≤ −d), the cylindrical region inside the hole
(−d ≤ z ≤ d, 0 ≤ ρ ≤ R), and the half-space behind the screen (z ≥ d), which can be partially filled
with a plane thin dielectric with thickness h (d+H ≤ z ≤ d+H + h) on a substrate with thickness hs
(d+H + h ≤ z ≤ d+H + h+ hs). All these regions are numbered in Fig. 1 in the appropriate order.
In each of them, a particular solution to the cylindrical Helmholtz Equation (5) is the product of the
Bessel function of the first kind of order 1 of the radial coordinate ρ by the imaginary exponent of the
normal coordinate z [17, 18]:

u(α, ρ, z) = J1(kαρ)exp(±ikβz), (11)

which is called the cylindrical mode of the field. The total diffraction field will be represented by an
infinite sum of such modes with undefined amplitudes. Here the first parameter α is real, and the second
parameter β must be related to it by the following equation:

α2 + β2 = ε. (12)

which ensures the satisfaction of cylindrical Helmholtz Equation (5) for each mode. Both of these
parameters characterize the propagation of the mode along the radial coordinate axis ρ and along the
normal z axis, respectively.

Then, in infinite Region 1 in front of the screen (z ≤ −d), two scalar field functions can be
represented as follows:

u1(ρ, z) = ik−1ρ {exp [ik(z+d)]− exp [ik(z+d)]}+ik−2

∫ +∞

0
A(α)J1(kαρ) exp [−ikβ(z + d)] dα; (13a)

ū1(ρ, z) = ik−2

∫ +∞

0
Ā(α)J1(kαρ) exp [−ikβ(z + d)]β−1dα, (13b)
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where the diffraction fields are written in the form of cylindrical Fourier integrals [17–20], which
determine the field expansions in the continuous spectrum of cylindrical modes (11),

β =
√

1− α2, (14)

A(α) and Ā(α) are not yet determined amplitudes of these modes, and the coefficients i/k2 and i/(k2β)
are extracted from the integrands in order to simplify the following formulas. For the same purpose,
expressions for incident (6) and reflected plane waves in the given region are specially distinguished
in (13a).

For diffraction modes (13) of Region 1, among two possible directions of field propagation or
attenuation along the z axis, only one was chosen, from the screen to infinity z = −∞. Then the
conditions for fields (13) at infinity can be satisfied by a certain choice of the branch of the square
root (14) for each of the modes, when the branch with nonnegative real and imaginary parts must be
taken into consideration.

Inside the hole (Region 2, Fig. 1), the boundary condition (9) should be additionally taken into
account. It considerably restricts the domain of allowable values of the radial propagation parameter
α for aperture modes (11) to a discrete set of certain values. From the second condition (9) and
Equation (4c), it follows that here the Bessel function itself in a scalar function ū(ρz) should vanish,
and the first condition (9) and Equation (4b) require its derivative in the other function u(ρ, z) to be
zero. Thus, inside the hole, the scalar field functions will no longer be integrals over the continuous
spectrum of modes, but they must be represented by infinite sums over modes with a discrete spectrum
of propagation parameters. In addition, it must be taken into account that Region 2 is bounded along
the z axis, and therefore here one can allow for modes propagation in both the positive and negative
directions along this axis:

u2(ρ, z) = ik−2
+∞∑
n=1

{anexp [ikβn(d+ z)] + bnexp [ikβn(d− z)]} J1(kαnρ); (15a)

ū2(ρ, z) = −ik−2
+∞∑
n=1

{
ānexp

[
ikβ̄n(d+ z)

]
− b̄nexp

[
ikβ̄n(d− z)

]}
β̄−1
n J1(kᾱnρ), (15b)

where an and bn, ān and b̄n are not yet determined amplitudes of the aperture modes propagating in
two opposite directions along the z axis;

αn = µn/(kR); ᾱn = µ̄n/(kR); βn =
√

1− α2
n; β̄n =

√
1− ᾱ2

n, (16)

µn and µ̄n are the zeros of the derivative of the Bessel function and of this function itself:

J ′
1µn) = 0; J1(µ̄n) = 0, (17)

where the prime denotes the derivative of the Bessel function with respect to its argument.
The choice of the representation of the field behind the screen depends on the presence here of a

dielectric layer on the substrate or not. Let us first consider the case when there is no dielectric, and
the entire diffraction system consists of a conducting screen with a hole (Fig. 1(a)). In this case, the
representation of the field will be similar to representation (13) in the region in front of the screen, and
only now the direction from the diffraction system to infinity is the positive direction of the z axis, but
not negative. In addition, there is no need to separate any mode as an incident wave from the diffraction
integral, and therefore, the scalar field functions in the region behind the screen can be written as:

u3(ρ, z) = ik−2

∫ +∞

0
B(α)J1(kαρ)exp [ikβ(z − d)] dα; (18a)

ū3(ρ, z) = −ik−2

∫ +∞

0
B̄(α)J1(kαρ)exp [ikβ(z − d)]β−1dα, (18b)

where B(α) and B̄(α) are the unknown mode amplitudes, and β is their normal propagation parameter
determined by the previous formula (14) and the above rule of choosing the square root branch.

Expressions for all six spatial components of the electric and magnetic fields in various regions can
be obtained by substituting representations (13), (15), or (18) into formulas (4). In turn, substitution of
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the resulting expressions into the boundary Equations (7), (8) at z = ±d makes it possible to determine
the unknown amplitudes of all field modes inside and outside the aperture. The obtained boundary
equations can be transformed and simplified using the known relations [19]

J1(kαρ)/(kαρ) + J ′
1(kαρ) = J0(kαρ); J1(kαρ)/(kαρ)− J ′

1kαρ) = J2(kαρ),

which yields the following form of these equations: on the entire boundary z = −d outside and inside
the aperture:∫ +∞

0

[
A(α) + Ā(α)

]
J0(kαρ)αdα =

+∞∑
m=1

[
Φ(+)
m J0(kαmρ) + Φ̄(+)

m J0(kᾱmρ)
]
θ(R− ρ); (19a)

∫ +∞

0

[
A(α)− Ā(α)

]
J2(kαρ)αdα =

+∞∑
m=1

[
Φ(+)
m J2(kαmρ)− Φ̄(+)

m J2(kᾱmρ)
]
θ(R− ρ); (19b)

on the entire boundary z = d outside and inside the aperture:∫ +∞

0

[
B(α) + B̄(α)

]
J0(kαρ)αdα =

+∞∑
m=1

[
Ψ(+)

m J0(kαmρ) + Ψ̄(+)
m J0(kᾱmρ)

]
θ(R− ρ); (19c)

∫ +∞

0
[B(α)−B(α)] J2(kαρ)αdα =

+∞∑
m=1

[
Ψ(+)

m J2(kαmρ)− Ψ̄(+)
m J2(kᾱmρ)

]
θ(R− ρ); (19d)

at the boundary z = −d inside the aperture (ρ < R):{
−4 +

∫ +∞

0

[
βA(α) + β−1Ā(α)

]
J0(kαρ)αdα

+

+∞∑
m=1

[
Φ(−)
m J0(kαmρ)βm + Φ̄(−)

m J0(kᾱmρ)β̄−1
m

]}
θ(R− ρ) = 0; (20a){∫ +∞

0

[
βA(α)− β−1Ā(α)

]
J2(kαρ)αdα

+

+∞∑
m=1

[
Φ(−)
m J2(kαmρ)βm − Φ̄(−)

m J2(kᾱmρ)β̄−1
m

]}
θ(R− ρ) = 0; (20b)

at the boundary z = d inside the aperture (ρ < R):{∫ +∞

0

[
βB(α) + β−1B̄(α)

]
J0(kαρ)αdα

−
+∞∑
m=1

[
Ψ(−)

m J0(kαmρ)βm + Ψ̄(−)
m J0(kᾱmρ)β̄−1

m

]}
θ(R− ρ) = 0; (20c){∫ +∞

0

[
βB(α)− β−1B̄(α)

]
J2(kαρ)αdα

−
+∞∑
m=1

[
Ψ(−)

m J2(kαmρ)βm − Ψ̄(−)
m J2(kᾱmρ)β̄−1

m

]}
θ(R− ρ) = 0, (20d)

where

Φ(±)
m = αm [am±bmexp(2ikβmd)] ; Φ̄(±)

m =ᾱm

[
ām±b̄mexp(2ikβ̄md)

]
; (21a)

Ψ(±)
m = αm [amexp(2ikβmd)±bm] ; Ψ̄(±)

m =ᾱm

[
āmexp(2ikβ̄md)±b̄m

]
(21b)

are various linear combinations of in-aperture mode amplitudes, and θ is the Heaviside step function [8]:
θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0.
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The Fourier-Bessel integrals in the left-hand sides of Equation (19) can be considered as the integral
Hankel transform of the amplitude functions A(α)± Ā(α) and B(α)± B̄(α) [19, 20]. For it, there is also
an inverse transform, which allows us to select these functions from under the integral sign. Applying
such a transform to integral Equation (19), we can express the amplitudes of the modes of the space
above and below the screen in terms of the amplitudes of the hole modes:

A(α) =
+∞∑
m=1

Φ(+)
m Q(+)

m (α); Ā(α) =
+∞∑
m=1

⌈
Φ(+)
m Q(−)

m (α) + Φ̄(+)
m Q̄(+)

m (α)
⌉
; (22a)

B(α) =
+∞∑
m=1

Ψ(+)
m Q(+)

m (α); B̄(α) =
+∞∑
m=1

⌈
Ψ(+)

m Q(−)
m (α) + Ψ̄(+)

m Q̄(+)
m (α)

⌉
, (22b)

where

Q(±)
m (α) =

[
I(0)m (α)± I(2)m (α)

]
/2; Q̄(±)

m (α) =
[
Ī(0)m (α)± Ī(2)m (α)

]
/2;

I(n)m (α) = k2
∫ R

0
Jn(kαρ)Jn(kαmρ)ρdρ; Ī(n)m (α) = k2

∫ R

0
Jn(kαρ)Jn(kᾱmρ)ρdρ; n = 0; 2.

In our case, when the parameters of the radial propagation of in-aperture modes αm and ᾱm (16) are
determined by the zeros of the Bessel function and its derivative, we obtain:

Q(+)
m (α) =

{
kαmR

(
α2
m − α2

)−1
J1(kαmR)J ′

1kαR) at α ̸= αm(
k2R2 − α−2

)
J2
1 (kαmR)/2 at α = αm

(23a)

Q(−)
m (α) = (αmα)−1J1(kαmR)J1(kαR); (23b)

Q̄(+)
m (α) =

 kαR
(
α2 − ᾱ

2
m

)−1
J ′
1kᾱmR)J ′

1kαR) at α ̸= ᾱm

k2R2 [J ′
1kαmR)]2/2 at α = ᾱm

(23c)

Q̄(−)
m = 0. (23d)

The resulting expressions (22) for the amplitudes of the extra-aperture modes should be substituted into
the remaining four Equation (20) for the tangential components of the magnetic field at the aperture
boundaries, and then the obtained equations must be solved with respect to the amplitudes of the
aperture modes. But these equations should be simplified preliminarily by multiplying them by terms
k2ρJ0(kαnρ), k

2ρJ0(kᾱnρ) or k
2ρJ2(kαnρ), k

2ρJ2(kᾱnρ) with various parameters αn and ᾱn, and then
by integrating over the radial coordinate ρ from zero to the edge of the aperture R. Taking into account
the relations

Q
(+)
n (αm) = 0 and Q̄

(+)
n (ᾱm) = 0 at m ̸= n;

Q
(−)
n (ᾱm) = 0 and Q̄

(−)
n (αm) = 0 at any m and n,

then we get: ∫ +∞

0

[
βA(α)Q(+)

n (α) + β−1Ā(α)Q(−)
n (α)

]
αdα+Φ(−)

n βnQn = 2γn; (24a)∫ +∞

0
β−1Ā(α)Q̄(+)

n (α)αdα+ Φ̄(−)
n β̄−1

n Q̄n = 0; (24b)∫ +∞

0

[
βB(α)Q(+)

n (α) + β−1B̄(α)Q(−)
n (α)

]
αdα−Ψ(−)

n βnQn = 0; (24c)∫ +∞

0
β−1B̄(α)Q̄(+)

n (α)αdα− Ψ̄(−)
n β̄−1

n Q̄n = 0, (24d)

where

Qn = Q(+)
n (αn) =

1

2

(
k2R2 − α−2

n

)
J2
1 (kαnR); Q̄n = Q̄(+)

n (ᾱn) =
1

2
k2R2[J ′

1(kᾱnR)]
2
; (25)

γn = k2
∫ R

0
J0(kαnρ)ρdρ = kRα−1

n J1(kαnR).
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Now, expressions (22) for the amplitudes of extra-aperture modes can be substituted into simplified
Equation (24). As a result, we obtain the following system of linear algebraic equations for these
amplitudes:

+∞∑
m=1

(
Φ(+)
m Unm + Φ̄(+)

m Vnm

)
+Φ(−)

n βnQn = 2γn; (26a)

+∞∑
m=1

(
Φ(+)
m Vmn + Φ̄(+)

m Ūnm

)
+ Φ̄(−)

n β̄−1
n Q̄n = 0; (26b)

+∞∑
m=1

(
Ψ(+)

m Unm + Ψ̄(+)
m Vnm

)
−Ψ(−)

n βnQn = 0; (26c)

+∞∑
m=1

(
Ψ(+)

m Vmn + Ψ̄(+)
m Ūnm

)
− Ψ̄(−)

n β̄−1
n Q̄n = 0, (26d)

where

Unm =

∫ +∞

0

[
βQ(+)

n (α)Q(+)
m (α) + β−1Q(+)

n (α)Q(+)
m (α)

]
αdα; (27a)

Vnm =

∫ +∞

0
Q(−)

n (α)Q̄(+)
m (α)αβ−1dα; Ūnm =

∫ +∞

0
Q̄(+)

n (α)Q̄(+)
m (α)αβ−1dα. (27b)

n = 1, 2, 3, 4, . . . Unknown amplitudes of in-aperture modes enter Equation (26) through linear
combinations (21).

The system of Equation (26) is not divided into two independent subsystems for the amplitudes
of two different polarizations of the field inside the aperture. This confirms the well-known fact that,
in the case of diffraction at the edges of cylindrical surfaces, H and E polarizations of the fields are
not independent, but mutually generate each other [17, 18]. They become independent only in one
particular case, when the initial diffracting field (2) does not depend at all on the azimuthal coordinate
φ. This is the case when an incident wave is a symmetric H type wave H0n [17, 18].

The system of linear Equation (26) is infinite-dimensional with an infinite number of unknowns.
In order to directly solve such a system, it is necessary to carry out the procedure of its reduction to a
system of finite dimensions. In this respect, the case of a circular aperture is completely analogous to
the case of a rectangular slot aperture [10, 11]: the truncation of the infinite series of amplitudes and
the infinite dimension of the system itself is carried out on the basis of the same criteria. It requires
achieving a certain accuracy in satisfaction of the boundary conditions (7), (8) on screen surfaces z = ±d
and at the aperture boundaries z = ±d, ρ < R for total fields (13), (15), (18). If, when checking the
boundary conditions for the fields, it turns out that the accuracy of their fulfillment is sufficient, then
we can restrict ourselves to the selected number of aperture and extra-aperture modes and amplitudes.
But if the error in these conditions is too great, then we need to increase the number of modes taken
into account in the theoretical calculation.

In the presence of a dielectric layer behind a screen with an aperture (Fig. 1(b)), it is necessary
to take into account the different forms of the field in different dielectric media and take into account
additional boundary conditions (9) on plane boundaries between these media. Usually, the thickness of
the dielectric layer h, which plays a part of a detector of optical radiation, is very small, being on the
order of the wavelength of light, but the thickness of the substrate hs, supporting the layer, is quite
great to ensure mechanical stability and fixation of a thin layer in space. Therefore, it will not be a
mistake to consider the thickness of the substrate to be infinitely great and to assume that it entirely
occupies the half-space z ≥ d+H+h. Such an assumption does not strongly distort the field pattern in
the dielectric layer and in front of it, but significantly simplifies the solution of the diffraction problem.

So, let the field behind the screen (z ≥ d) fills three regions (Fig. 1(b)): Region 3 between the
conducting screen and the dielectric layer (d ≤ z ≤ d + H), Region 4 inside the dielectric layer
(d +H ≤ z ≤ d +H + h), and Region 5 inside the substrate (z ≥ d +H + h). By analogy with (18),
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the general expression for scalar field functions in these regions can be written as follows:

uM (ρ, z) = ik−2

∫ +∞

0
B(α)J1(kαρ)

[
f+
M (α, z)/D(α)

]
dα; (28a)

ūM (ρ, z) = −ik−2

∫ +∞

0
B̄(α)J1(kαρ)β

−1
3

[
f̄+
M (α, z)/D̄(α)

]
dα, (28b)

where M = 3; 4; 5 is the medium number,

f±
3 (α, z) = P (α) exp [ikβ3(z − d)]±R(α) exp [ikβ3(2H + d− z)] ; (29a)

f±
4 (α, z) = T34 {exp [ikβ4(z − d−H)]±R45 exp [ikβ4(2h+H + d− z)]} ; (29b)

f±
5 (α, z) = T34T45 exp [ikβ5(z − d−H − h)] exp [ik(β3H + β4h)] ; (29c)

P (α) = 1 +R34R45 exp(2ikβ4h); R(α) = R34 +R45 exp(2ikβ4h), (30)

and similarly for the same quantities of another polarization, which are indicated by a bar above,

βM =
√

εM − α2 (31)

is the parameter of normal propagation of cylindrical modes along the z axis in various dielectric media,
which must satisfy condition (12) in each medium, and εM is the permittivity of the medium filling
given region (ε3 = 1, β3 = β (14));

R34 =
εν4β3 − εν3β4
εν4β3 + εν3β4

; T34 =
2εν3β3

εν4β3 + εν3β4
; R45 =

εν5β4 − εν4β5
εν5β4 + εν4β5

; T44 =
2εν4β4

εν5β4 + εν4β5

are the amplitude reflection and transmission coefficients [8, 16] on the plane boundaries z = d+H and
z = d+H + h between media 3–4 and 4–5; ν = 0 for our conventional H polarization and ν =1 for E
polarization,

D(α) = P (α) +R(α) exp(2ikβ3H); D̄(α) = P̄ (α)− R̄(α) exp(2ikβ3H). (32)

To determine the spatial components of the field in various dielectric media behind the screen,
expressions (28) must be substituted into Equation (4). In this case, the fields in front of the screen
and inside the aperture will be determined by the same expressions (13), and (15), (16), as in the case
of the absence of a dielectrics behind the screen.

Scalar functions (28) differ from those in (18) in the case of the absence of dielectrics by a more
complex form of functions (29), which determine the dependence of the mode field on the normal z-
coordinate. Since here each dielectric layer has two boundaries, there are terms in these functions,
which describe two waves, propagating in the forward and backward directions from the aperture (in
the z-axis), except, of course, for the substrate with no lower boundary, generating opposite wave
upon reflection. The coefficients of these terms have been selected in such a way that for each mode,
conditions (9) of the continuity of the tangential components of the electric and magnetic fields are
satisfied at both interfaces of various dielectrics z = d + H and z = d + H + h. Thus, for fields (28)
as a whole, the conditions at the boundaries of dielectrics are satisfied automatically, and for them it
remains to require the fulfillment of boundary conditions (7), (8) on the screen surface z = d and on
the lower boundary of the aperture.

The transformation of the corresponding boundary equations and their reduction to equations for
the amplitudes of the aperture modes is carried out in exactly the same way as in the case of the absence
of dielectrics behind the screen. The only difference from the case with dielectrics is that additional
factors appear in the integrals over the modes of the space behind the screen, due to the presence of
terms f±

3 (α, d)/D(α) in (28) instead of simple exponentials in (18). But their constant coefficients are
chosen so that f+

3 (αd)/D(α) = 1; f̄−
3 (αd)/D̄(α) = 1, then the amplitudes of the continuous spectrum

modes B(α) and B̄(α) will be determined by the same formulas (22b) as in the case of free space behind
the screen. The formal difference of the case with dielectrics will manifest itself only in the fact that in
Equations (26c), (26d) the coefficients (27) of the system of amplitude equations in the integrands will
have additional factors

f−
3 (α, d)/D(α) = S(α)/D(α); f̄+

3 (α, d)/D̄(α) = S̄(α)/D̄(α),
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where S(α) = P (α) − R(α) exp(2ikβ3H); S̄(α) = P̄ (α) + R̄(α) exp(2ikβ3H), moreover, the functions
P (α) and D(α) with an overscribed bar and without a bar are defined here by formulas (30), (32). As
a result, instead of system (26) for aperture mode amplitudes, we get a new system, where the first two
equations are exactly written as (26a), (26b), and the other two equations will have the following form:

+∞∑
m=1

(
Ψ(+)

m Wnm + Ψ̄(+)
m Knm

)
−Ψ(−)

n βnQn = 0; (33a)

+∞∑
m=1

(
Ψ(+)

m Kmn + Ψ̄(+)
m W̄nm

)
− Ψ̄(−)

n β̄−1
n Q̄n = 0, (33b)

where

Wnm =

∫ +∞

0

{
β3 [P (α)/D(α)]Q(+)

n (α)Q(+)
m (α) + ε3β

−1
3

[
P̄ (α)/D̄(α)

]
Q(−)

n (α)Q(−)
m (α)

}
αdα; (34a)

Knm =

∫ +∞

0

[
P̄ (α)/D̄(α)

]
Q(−)

n (α)Q̄(+)
m (α)ε3αβ

−1
3 dα; (34b)

W̄nm =

∫ +∞

0

[
P̄ (α)/D̄(α)

]
Q̄(+)

n (α)Q̄(+)
m (α)ε3αβ

−1
3 dα. (34c)

The remaining quantities are given here by the same expressions (23), (25), (27) as in the case of
diffraction without dielectrics.

Just as in the case of slot apertures [11], the quantities D(α) and D̄(α) (32), included in expressions
for fields (28) and in formulas (34) for the coefficients of the system of amplitude equations (33), can
become very small in magnitude or vanish altogether. Their appearance in these formulas is due to
the reflection and refraction of diffraction radiation at the boundaries of the dielectric layer placed
behind the aperture, and the vanishing of these quantities corresponds physically to the excitation of
waveguide modes in the plane dielectric layer at the corresponding spatial frequencies [11]. As a result,
field integrals (28) and integrals of coefficients (34) acquire poles — singular points, where the integrands
become infinite. The calculation of such integrals requires a special approach, and one of the simplest
and most effective of them is the separation of a singularity as an isolated term [11].

But for the calculation of the singular integrals, we can apply another simpler regularization method
without selecting isolated waveguide components. Namely, it is sufficient to assume that the dielectric
layer has a weak fictitious absorption (on the order of 10−5–10−6), the appearance of which practically
does not distort the diffraction field pattern. Then the zeros of the functions D(α) and D̄(α) (32) will
shift so far enough from the real axis of the argument α that we can neglect the singularity of the
integrands. Physically, this corresponds to the situation when the field of waveguide modes at infinity
is negligibly small, and the region of its existence lies entirely within the region of excitation of the
nonresonant diffraction field. Indeed, the amplitudes of the waveguide components of the fields will
be proportional to the Bessel function and its derivative, and therefore, they decrease with increasing
argument (the radial coordinate ρ). Hence, in contrast to the rectangular two-dimensional geometry of
slot diffraction [11], here the waveguide modes, diverging in all directions from the circular aperture,
will be characterized by decreasing amplitudes, even if the dielectric layer and substrate are transparent,
with the decay being approximately the same as for the reminder of the diffraction field. This physically
confirms the possibility of formally taking into account waveguide modes in the total diffraction field
without special separation of them as isolated field components.

As an illustration, Fig. 2 shows the results of calculation of the spatial distribution of the amplitudes
of two components of the total electric field at the diffraction of a plane electromagnetic wave of unit
amplitude on a circular hole with the radius R = 1.2λ in a perfectly conducting screen with the thickness
of 2d = 1.6λ, behind which at a distance H = 0.6λ there is a plane dielectric with the thickness h = 0.8λ
having the refractive index n = 1.62, fixed on an infinitely thick substrate with refractive index ns = 1.46.
This figure demonstrates effectiveness of the presented method for calculation of the field pattern in the
near zone. However, below we will be interested in the electric field only in a thin dielectric film, which
plays a part of a radiation detector or an object under study in optical spectroscopy. For evaluation
of the focusing properties of a circular aperture, we will use the same technique, as for the case of a
rectangular slot [7].
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(a) (b)

Figure 2. The magnitude of the amplitude of (a) the radial and (b) azimuthal components of the total
electric field of diffraction in various points of space. Thicker amplitude lines indicate the boundaries
of the dielectric layer.

3. FOCUSING PROPERTIES OF A CIRCULAR MICROHOLE

The time-averaged energy density of the electric field (3a) at each point inside the dielectric layer (film)
is determined by the expression [17]:

w(ρ, φ, z) =
ε

16π

{[∣∣∣Ẽρ (ρ, z)
∣∣∣2 + ∣∣∣Ẽz (ρ, z)

∣∣∣2] sin2φ+
∣∣∣Ẽφ (ρ, z)

∣∣∣2 cos2φ} (35)

(if the dielectric permittivity of the film is complex, then one can take its real part as the quantity ε,
which is usually much greater in magnitude than the imaginary one). The energy density (35) in the
near zone weakly depends on the normal coordinate z inside the layer (see Fig. 2), so it makes sense to
average expression (35) over the thickness of the dielectric from z = d+H to z = d+H + h. We will
consider the relative density of the electric energy of the field

W̄ (ρ, φ) =
ε

hw0

∫ d+H+h

d+H

{[∣∣∣Ẽρ (ρ, z)
∣∣∣2 + ∣∣∣Ẽz (ρ, z)

∣∣∣2] sin2φ+
∣∣∣Ẽφ (ρ, z)

∣∣∣2 cos2φ}dz,

where w0 is the average electric energy density of the incident plane wave (1). Since the fields are
symmetrical along the azimuthal angle φ, it is also reasonable to average over this spatial coordinate
as well. Then the relative intensity of the electric field inside the dielectric at a distance ρ from the
aperture axis is

W (ρ) =
1

2π

∫ 2π

0
W̄ (ρ, φ)dφ =

ε

2hw0

∫ d+H+h

d+H

[∣∣∣Ẽρ (ρ, z)
∣∣∣2 + ∣∣∣Ẽφ (ρ, z)

∣∣∣2 + ∣∣∣Ẽz (ρ, z)
∣∣∣2] dz, (36)

The value (36) can be calculated for all values of ρ using the solution of the diffraction problem (28),
(29) for the region M = 4. The distribution of this value along the radial coordinate ρ, of course, will
be nonuniform. Let us determine the effective amplitude A of the uniform intensity distribution along
the radius, which is equivalent to the inhomogeneous distribution (36) according to the equality:∫ +∞

0
A∆(ρ)ρdρ =

∫ +∞

0
W (ρ)∆(ρ)ρdρ,
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where ∆(ρ) is the weight function. By analogy with the case of a simple slot [7], we set ∆(ρ) = W 2(ρ)
for it. Then the effective amplitude is equal to:

A = W3/W2, where Wn =

∫ +∞

0
Wn(ρ)ρdρ.

It corresponds to effective aperture radius Ra, namely: the product of the effective amplitude A by the
area of a circle with such an effective radius gives the total field energy contained in the dielectric:

A · πR2
a =

∫ +∞

0
dρ

∫ 2π

0
W̄ (ρ, φ)ρdφ.

And since the integral in the right hand side is equal to 2πW1, then πR2
a = 2πW1/A = 2πW1W2/W3.

This expression approximately characterizes the effective area of the diffraction image of a circular hole
in a dielectric film. Then the index of focusing, or the index of the relative reduction of the aperture
image, introduced in [7], can be defined as the ratio of the real aperture area to the effective area of the
aperture image:

F = πR2/(πR2
a) = R2W3/(2W1W2) (37)

This index makes it possible to evaluate the quality of the aperture image formed by the diffraction field
in a dielectric film, depending on the parameters of the problem: the aperture radius R, the thickness
of the conducting screen 2d, the distance from the screen to the dielectric layer H, and its thickness h.
For a slot aperture of rectangular geometry, the last two parameters have little effect on the quality of
diffraction image, and the main factors influencing that are the aperture size and screen thickness [7].
Therefore, we will study the quality of diffraction images of a circular aperture by analogy with the
case of a slot aperture [7], calculating the value of the focusing parameter F (37) depending on the
radius R and the half-thickness of the screen d. To make it convenient for the comparison of these two
cases of diffraction, a rectangular slot and a circular aperture, we use the same values of the remaining
parameters of the system (H, h, and refractive indices) in calculations as in [7] (n = 1.62, ns = 1.46).

(a) (b)

Figure 3. Focusing parameter F (37) of the image of a circular hole as a function of its radius R and
half-thickness d of a perfectly conducting screen d at diffraction of a linearly polarized plane wave on a
screen with a hole, (a) in empty space without dielectrics and (b) in a dielectric film with the thickness
h = 1.2λ, located at the distance H = 0.2λ behind the screen.
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Figure 3 shows the results of calculation of the focusing parameter F (37) depending on parameters
R and d of the diffraction system, calculated using the above obtained solution of the diffraction
problem in the absence and presence of a thin dielectric film on the substrate behind the aperture.
The comparison of Figs. 3(a) and 3(b) shows that the positions of the focusing parameter maxima on
the plane of parameters R and d inside the dielectric layer are slightly shifted from their position for the
case of empty space, and the magnitude of these maxima in the dielectric is slightly greater. Therefore,
when a dielectric layer appears in the near zone behind the aperture, one should expect an increase in
the intensity of the diffraction image and an improvement in its quality.

Figures 4 and 5 show two examples of the radial distribution of the relative electrical energy
density (36) of the total diffraction field in the dielectric layer. Fig. 6(a) shows the results of calculation

Figure 4. Distribution of the relative energy density of the electric field inside the dielectric film with
the thickness of h = 1.2λ, located at the distance of H = 0.2λ from the circular aperture with the radius
R in a conducting screen having the half-thickness d = 1.72λ.

Figure 5. Distribution of the relative energy density of the electric field inside the dielectric film with
the thickness of h = 1.2λ, located at the distance of H = 0.6λ from the circular aperture with the radius
R in the conducting screen having the half-thickness d = 1.2λ.
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(a) (b)

Figure 6. Distribution of the relative energy density of the electric field inside a dielectric film with
the thickness of h = 1.2λ, located at the distance H = 0.6λ from a circular aperture of the radius of (a)
R = 1.32λ and (b) R = 1.44λ in a conducting screen having the half-thickness d = 1.2λ. The thin line
shows the ideal image of the aperture in the form of an approximating step of height F , the dotted line
reproduces real dimension of the hole.

of the image intensity as a function of the radial coordinate ρ for the same parameters of the diffraction
system as in the case of TE polarization diffraction by a slot [7] (here, the role of the half-width of the
slot l is played by the aperture radius R). The comparison of Fig. 6(a) with the similar Fig. 4(a) of
the work [7] shows that the circular aperture gives a more diffuse image (its intensity drops to zero at a
distance of 1.75λ from the center, which is greater than the radius of the hole, while the slot aperture of
the same size of 1.2λ provides a narrower image focus area, which is less than one wavelength). However,
a circular aperture can give a noticeably greater total intensity of the diffraction spot, and the maxima
of its intensity, determined by the maxima of the focusing parameter F , are achieved at other values of
the aperture size and screen thickness than for a slot aperture (see Fig. 6(b)).

4. CONCLUSION

Thus, in the near zone of a small circular aperture, excited by a normally incident linearly polarized
plane wave, the same anomalous phenomena can occur as for a slot aperture, excited by the TE -
polarized wave, whose electric vector is parallel to the slot edges. This is the phenomenon of a sharp
increase in the intensity of the total diffraction field and the phenomenon of lensless focusing of this
field into a small region smaller than the aperture area. In both cases, these phenomena manifest
themselves at aperture sizes of the order of the radiation wavelength and more, but not less, for various
thicknesses of the conducting screen. The conditions for the simultaneous existence of these phenomena
can be determined by calculation and estimation of the focusing parameter (37), and in both cases these
conditions are very sensitive to changes in the size of the aperture (the radius of the circular hole R, the
half-width of the slot l) and the thickness of the conducting screen d, but for that and other apertures
they do not agree. The effect of increasing the total intensity of the diffraction image can be stronger
by several times for a circular aperture, but the effect of lensless focusing is noticeably weaker for that:
under similar conditions, with offset from the axis, the image intensity of a circular hole decreases more
slowly than the intensity of the diffraction pattern for the slot.

The developed theory, together with the theory of diffraction by slot apertures [7, 10], is quite
rigorous, since it does not allow any mathematical approximations and any limitations on aperture
and dielectric film dimensions. However, it should be borne in mind that the field of its application,
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strictly speaking, is limited by the range of sufficiently long electromagnetic waves, up to the far infrared
region, and for the optical and near infrared radiation it should be used with caution. The fact is that
for these ranges there are no solid materials that could be considered as perfectly conducting, except
for alkali metals, but for ordinary metals, the conductivity value is not high enough to consider them
as perfect conductors [8, 21]. Nevertheless, the authors of [5] experimentally corroborated the presence
of the phenomenon of lensless focusing for laser radiation with the wavelength of λ = 488 nm for a slot
aperture in a plane aluminum screen. They clearly observed diffracted beam narrowing in 3–4 times
less than the slot width at the distance of approximately 3–4µm from the screen, and, accordingly,
corresponding sharp increase in the local intensity of this beam.
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