Vol. 103
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-09-21
3-d Electrical Impedance Imaging of Lung Injury
By
Progress In Electromagnetics Research B, Vol. 103, 19-36, 2023
Abstract
Pulmonary edema assessment is a key factor in monitoring and guiding the treatment of critically ill patients. To date, the methods available at the bedside to estimate the physiological correlation of pulmonary edema and extravascular pulmonary fluid are often unreliable or require invasive measurements. The aim of this article is to develop an imaging method of reliably assessing pulmonary edema by utilizing functional electrical impedance tomography. In this article, the Split-Bregman algorithm is used to solve the Total Variation (TV) minimization problem in EIT image reconstruction. A thorax model is constructed according to CT images of rats. Through simulation and experiment, the proposed method improves the quality of reconstructed image significantly compared with existing methods. A pulmonary edema experiment in rats is also carried out. The development of pulmonary edema is analyzed numerically through EIT images.
Citation
Ming Ma, Zepeng Hao, Qi Wang, Xiuyan Li, Xiaojie Duan, Jianming Wang, and Hui Feng, "3-d Electrical Impedance Imaging of Lung Injury," Progress In Electromagnetics Research B, Vol. 103, 19-36, 2023.
doi:10.2528/PIERB23060601
References

1. Murray, J. F., "Pulmonary edema: Pathophysiology and diagnosis," International Journal of Tuberculosis and Lung Disease, Vol. 15, No. 2, 155-160, 2011.

2. Schwaiberger, D., P. A. Pickerodt, A. Pomprapa, O. Tjarks, F. Kork, W. Boemke, et al. "Closed-loop mechanical ventilation for lung injury: A novel physiological-feedback mode following the principles of the open lung concept," Journal of Clinical Monitoring and Computing, Vol. 32, No. 3, 493-502, 2018.
doi:10.1007/s10877-017-0040-0

3. Bodenstein, M., M. David, and K. Markstaller, "Principles of electrical impedance tomography and its clinical application," Critical Care Medicine, Vol. 37, No. 2, 713-724, 2009.
doi:10.1097/CCM.0b013e3181958d2f

4. Tingay, D. G., M. J. Wallace, R. Bhatia, G. M. Schmolzer, V. A. Zahra, M. J. Dolan, et al. "Surfactant before the first inflation at birth improves spatial distribution of ventilation and reduces lung injury in preterm lambs," Journal of Applied Physiology, Vol. 116, No. 3, 251-258, 2014.
doi:10.1152/japplphysiol.01142.2013

5. Herrero, R., G. Sanchez, J. A. Lorente, and , "New insights into the mechanisms of pulmonary edema in acute lung injury," Annals of Translational Medicine, Vol. 6, No. 2, 32, 2018.
doi:10.21037/atm.2017.12.18

6. Park, S., R. Farah, S. M. Shea, E. Tryggestad, R. Hales, and J. Lee, "Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning," Physics in Medicine and Biology, Vol. 63, No. 2, 025015, 2018.
doi:10.1088/1361-6560/aaa20b

7. Balachandran, R., D. Schurzig, J. M. Fitzpatrick, and R. F. Labadie, "Evaluation of portable CT scanners for otologic image-guided surgery," International Journal of Computer Assisted Radiology and Surgery, Vol. 7, No. 2, 315-321, 2012.
doi:10.1007/s11548-011-0639-4

8. Schullcke, B., S. Krueger-Ziolek, B. Gong, R. A. Jorres, U. Mueller-Lisse, and K. Moeller, "Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: A simulation study," Journal of Clinical Monitoring and Computing, Vol. 32, No. 4, 753-761, 2018.
doi:10.1007/s10877-017-0069-0

9. Crabb, M. G., J. L. Davidson, R. Little, P. Wright, A. R. Morgan, C. A. Miller, et al. "Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT," Physiological Measurement, Vol. 35, No. 5, 863-879, 2014.
doi:10.1088/0967-3334/35/5/863

10. Fan, W. and H. X. Wang, "3D modelling of the human thorax for ventilation distribution measured through electrical impedance tomography," Measurement Science and Technology, Vol. 21, No. 11, 115801-1-115801-8, 2010.
doi:10.1088/0957-0233/21/11/115801

11. Frerichs, I., "Electrical impedance tomography (EIT) in applications related to lung and ventilation: A review of experimental and clinical activities," Physiological Measurement, Vol. 21, No. 2, R1-R21, 2000.
doi:10.1088/0967-3334/21/2/201

12. Adler, A., M. B. Amato, J. H. Arnold, R. Bayford, M. Bodenstein, S. H. Bohm, et al. "Whither lung EIT: Where are we, where do we want to go and what do we need to get there?," Physiological Measurement, Vol. 33, No. 5, 679-694, 2012.
doi:10.1088/0967-3334/33/5/679

13. Javaherian, A., M. Soleimani, and K. Moeller, "A fast time-difference inverse solver for 3D EIT with application to lung imaging," Medical & Biological Engineering & Computing, Vol. 54, No. 8, 1243-1255, 2016.
doi:10.1007/s11517-015-1441-1

14. Martin, S. and C. T. M. Choi, "A post-processing method for three-dimensional electrical impedance tomography," Scientific Reports, Vol. 7, 7212, 2017.
doi:10.1038/s41598-017-07727-2

15. Dimas, C., N. Uzunoglu, and P. P. Sotiriadis, "An efficient point-matching method-of-moments for 2D and 3D electrical impedance tomography using radial basis functions," IEEE Transactions on Biomedical Engineering, Vol. 69, No. 2, 783-794, 2022.
doi:10.1109/TBME.2021.3105056

16. Sun, B. Y., S. H. Yue, Z. H. Hao, Z. Q. Cui, and H. X. Wang, "An improved Tikhonov regularization method for lung cancer monitoring using electrical impedance tomography," IEEE Sensors Journal, Vol. 19, No. 8, 3049-3057, 2019.
doi:10.1109/JSEN.2019.2892179

17. Tawil, D. S., D. Rye, and M. Velonaki, "Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes," IEEE Transactions on Robotics, Vol. 27, No. 3, 425-435, 2011.
doi:10.1109/TRO.2011.2125310

18. Gong, B., B. Schullcke, S. Krueger-Ziolek, F. Zhang, U. Mueller-Lisse, and K. Moeller, "Higher order total variation regularization for EIT reconstruction," Medical & Biological Engineering & Computing, Vol. 56, No. 8, 1367-1378, 2018.
doi:10.1007/s11517-017-1782-z

19. Borsic, A. and A. Adler, "A primal-dual interior-point framework for using the L1 or L2 norm on the data and regularization terms of inverse problems," Inverse Problems, Vol. 28, No. 9, 095011, 2012.
doi:10.1088/0266-5611/28/9/095011

20. Brito-Loeza, C., R. Legarda-Saenz, and A. Martin-Gonzalez, "A fast algorithm for a total variation based phase demodulation model," Numerical Methods for Partial Differential Equations, Vol. 36, No. 3, 617-636, 2020.
doi:10.1002/num.22444

21. Strauss, T. and T. Khan, "Statistical inversion in electrical impedance tomography using mixed total variation and non-convex l(p) regularization prior," Journal of Inverse and Ill-Posed Problems, Vol. 23, No. 5, 529-542, 2015.
doi:10.1515/jiip-2013-0064

22. Gonzalez, G., V. Kolehmainen, and A. Seppanen, "Isotropic and anisotropic total variation regularization in electrical impedance tomography," Computers & Mathematics with Applications, Vol. 74, No. 3, 564-576, 2017.
doi:10.1016/j.camwa.2017.05.004

23. Tehrani, J. N., A. McEwan, C. Jin, and A. van Schaik, "L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve)," Applied Mathematical Modelling, Vol. 36, No. 3, 1095-1105, 2012.
doi:10.1016/j.apm.2011.07.055

24. Wu, C. Y., Z. H. Wei, H. Bi, B. C. Zhang, Y. Lin, and W. Hong, "InSAR imaging based on L1 regularisation joint reconstruction via complex approximated message passing," Electronics Letters, Vol. 54, No. 4, 237-239, 2018.
doi:10.1049/el.2017.3906

25. Mamatjan, Y., A. Borsic, D. Gursoy, and A. Adler, "An experimental clinical evaluation of EIT imaging with l(1) data and image norms," Physiological Measurement, Vol. 34, No. 9, 1027-1039, 2013.
doi:10.1088/0967-3334/34/9/1027

26. Liu, J. Z., L. Lin, W. B. Zhang, and G. Li, "A novel combined regularization algorithm of total variation and Tikhonov regularization for open electrical impedance tomography," Physiological Measurement, Vol. 34, No. 7, 823-838, 2013.
doi:10.1088/0967-3334/34/7/823

27. Borsic, A., B. M. Graham, A. Adler, and W. R. B. Lionheart, "In vivo impedance imaging with total variation regularization," IEEE Transactions on Medical Imaging, Vol. 29, No. 1, 44-54, 2010.
doi:10.1109/TMI.2009.2022540

28. De Munck, J. C., T. J. C. Faes, and R. M. Heethaar, "The boundary element method in the forward and inverse problem of electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 6, 792-800, 2000.
doi:10.1109/10.844230

29. Abascal, J., J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, et al. "Fluorescence diffuse optical tomography using the split Bregman method," Medical Physics, Vol. 38, No. 11, 6275-6284, 2011.
doi:10.1118/1.3656063

30. Yang, J. F., Y. Zhang, and W. T. Yin, "A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 288-297, 2010.
doi:10.1109/JSTSP.2010.2042333

31. Yang, J. F. and Y. Zhang, "Alternating direction algorithms for l(1)-problems in compressive sensing," SIAM Journal on Scientific Computing, Vol. 33, No. 1, 250-278, 2011.
doi:10.1137/090777761

32. Xu, W. H., Y. N. Xie, X. Zhang, and W. Li, "Cerebral angiography under artificial intelligence algorithm in the design of nursing cooperation plan for intracranial aneurysm patients in craniotomy clipping," Computational and Mathematical Methods in Medicine, 2182931, 2022.

33. Wang, Q., J. M. Wang, X. Y. Li, X. J. Duan, R. H. Zhang, H. Zhang, et al. "Exploring respiratory motion tracking through electrical impedance tomography," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-12, 2021.

34. Gao, X. W., P. Y. Qian, D. Cen, W. J. Hong, Q. Peng, and M. Xue, "Synthesis of phosphatidylcholine in rats with oleic acid-induced pulmonary edema and effect of exogenous pulmonary surfactant on its De Novo synthesis," Plos One, Vol. 13, No. 3, 1-13, 2018.

35. Gomez-Laberge, C., J. H. Arnold, and G. K. Wolf, "A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury," IEEE Transactions on Medical Imaging, Vol. 31, No. 3, 834-842, 2012.
doi:10.1109/TMI.2012.2183641

36. Li, X. Y., X. J. Chen, Q. Wang, J. M. Wang, X. J. Duan, Y. K. Sun, et al. "Electrical-impedance-tomography imaging based on a new three-dimensional thorax model for assessing the extent of lung injury," Aip Advances, Vol. 9, No. 12, 125310, 2019.
doi:10.1063/1.5124353

37. Trepte, C. J. C., C. R. Phillips, J. Sola, A. Adler, S. A. Haas, M. Rapin, et al. "Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury," Critical Care, Vol. 20, 18, 2016.
doi:10.1186/s13054-015-1173-5

38. Riera, J., P. J. Riu, P. Casan, and J. R. Masclans, "Electrical impedance tomography in acute lung injury," Medicina Intensiva, Vol. 35, No. 8, 509-517, 2011.
doi:10.1016/j.medin.2011.05.005

39. Hagawane, T. N., R. V. Gaikwad, and N. A. Kshirsagar, "Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome," Indian Journal of Medical Research, Vol. 143, 624-632, 2016.
doi:10.4103/0971-5916.187111

40. Wang, Q., H. Y. Zhang, X. Y. Li, X. J. Duan, J. M. Wang, R. H. Zhang, et al. "Error-constraint deep learning scheme for electrical impedance tomography (EIT)," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-11, 2022.

41. Quintel, M., P. Pelosi, P. Caironi, J. P. Meinhardt, T. Luecke, P. Herrmann, et al. "An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury," American Journal of Respiratory and Critical Care Medicine, Vol. 169, No. 4, 534-541, 2004.
doi:10.1164/rccm.200209-1060OC