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3-D Electrical Impedance Imaging of Lung Injury
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Abstract—Pulmonary edema assessment is a key factor in monitoring and guiding the treatment of
critically ill patients. To date, the methods available at the bedside to estimate the physiological
correlation of pulmonary edema and extravascular pulmonary fluid are often unreliable or require
invasive measurements. The aim of this article is to develop an imaging method of reliably assessing
pulmonary edema by utilizing functional electrical impedance tomography. In this article, the Split-
Bregman algorithm is used to solve the Total Variation (TV) minimization problem in EIT image
reconstruction. A thorax model is constructed according to CT images of rats. Through simulation and
experiment, the proposed method improves the quality of reconstructed image significantly compared
with existing methods. A pulmonary edema experiment in rats is also carried out. The development of
pulmonary edema is analyzed numerically through EIT images.

1. INTRODUCTION

Assessment of pulmonary edema in patients is a key factor in guiding treatment, especially in critically
ill patients. Pulmonary edema [1] is an increase in water content in the lungs caused by the disturbance
of fluid exchange between blood vessels and tissues in lungs [2]. This disease can seriously affect the
respiratory function, and it is a common clinical cause of acute respiratory failure [3]. Studies have shown
that pulmonary edema develops rapidly and can lead to serious and even life-threatening complications
if not diagnosed in time [4, 5]. Therefore, a real-time and safe monitoring tool is needed for early
diagnosis of pulmonary edema patients.

In recent years, medical imaging techniques such as computed tomography (CT) and magnetic
resonance imaging (MRI) have been used to obtain high-resolution anatomical images of the thorax,
allowing regional information to be obtained about injured lungs [6, 7]. However, the traditional
medical imaging methods cannot provide real-time monitoring of the human body. As a functional
imaging technology, electrical impedance tomography (EIT) can capture the dynamic characteristics
of pulmonary edema in real time for analyzing the process of pulmonary edema [8, 9]. EIT is a novel
imaging method that is nonionizing and noninvasive, making it a very attractive tool for continuous
bedside imaging [10–12]. Given its ability to assess regional characteristics of lung structure, it can be
considered an ideal tool for monitoring heterogeneous lung in acute pulmonary edema.

EIT imaging is an inverse problem [13]. Due to lack of measured data and ill-conditioned sensitivity
matrix, the spatial resolution of reconstructed images is low, and measurement noise often produces
image artifacts [14]. Many direct and iterative methods are used in EIT image reconstruction [15].
Since longitudinal changes in lung structure could not be analyzed by 2D EIT, 3D EIT is used for
the analysis in this article. Traditional algorithms optimize computations by penalizing the L2 norm
of the solution, such as Tikhonov regularization and Laplacian regularization [16, 17]. These L2-norm
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regularization algorithms smooth the edge features of an electrical impedance distribution and always
cause distortion [18, 19].

With the complexity of the model and medium distribution, stronger L1-norm regularization is
required. The Total Variation (TV) method is an L1-norm regularization that can be solved by methods
such as Primal-Dual Interior Point Method (PDIPM), Linearized Alternating Direction Method of
Multipliers (LADMM), and Split-Bregman [20–22]. TV regularization has received much attention,
especially in electrical tomography in recent years [23, 24]. The TV method is primarily applied in
the fields of image denoising and image restoration, focusing on differences in the two-dimensional
spatial dimension [25]. In the context of EIT, the two-dimensional TV method has been widely used
for image reconstruction and imaging problems [26]. With further research, it becomes evident that
3D-TV has more pronounced advantages over traditional TV in EIT imaging. Since EIT is inherently a
volume-based imaging technique, the 3D-TV method can better consider the distribution and variations
of conductivity in the entire three-dimensional space. By incorporating the 3D-TV method, EIT
imaging can more comprehensively describe the conductivity distribution in the target region, leading
to improved accuracy and stability in imaging.

In this article, a realistic 3D thorax model is constructed based on the anatomical structure of
the rat thorax. To better observe the process of pulmonary edema in rats, Split-Bregman algorithm
is used to solve the isotropic 3D-TV minimization problem of EIT image reconstruction. According to
simulation and experiment results, our method has significantly improved the quality of reconstructed
images compared with traditional conjugate gradient (CG) and TV algorithms [22, 27]. The development
of pulmonary edema in rats can be continuously monitored according to the EIT technique.

The article is organized as follows. In Section 2, the basic mathematical model based on TV
regularization for EIT is briefly described. Section 3 introduces the 3D-TV regularization with its
solution based on the Split-Bregman iteration. In Section 4, the establishment of a 3D chest model
for a rat was presented, and the forward problem of EIT was addressed. In Section 5, a numerical
experiment of 3D EIT lung imaging of rats is designed, and a series of parameters for 3D-TV method
are studied and selected. In Section 6, 3D reconstruction and analysis of the entire process for pulmonary
edema in rats are performed. Finally, the conclusions are drawn in Section 7.

2. BASICS OF EIT RECONSTRUCTION

The relationship between the variations of electrical conductivity distribution σ within the region of
EIT reconstruction and the measured boundary voltage difference V can be expressed as follows:

V = F (σ) + e (1)

where F is the nonlinear forward operator, and e is the measurement error. To simplify the measurement
process and mathematical modeling, the linearized EIT model assumes that the measurements of
boundary voltage difference V can be approximated by the product of the sensitivity matrix (J) and the
perturbation of the conductivity distribution (σ) at a reference or baseline state. In practical scenarios,
(1) can be linearized as

V = Jσ + e (2)

In this article, a chest model with a homogeneous distribution of conductivity is used as a reference.
The inverse problem in EIT image reconstruction involves the process of deriving the conductivity
distribution from measured voltage data [28]. For this process, it can be formulated as:

σ∗ = argmin
σ

||Jσ − V ||22 + λφ(σ) (3)

To incorporate TV regularization into this optimization problem, a collection of transforms or
operators on σ is considered. The non-separable penalty function is specified as:

φ(σ) =
∑
i

||Diσ||2 (4)

where
∑

i is taken over all voxels. We define N as the total number of discretized voxels. For any i, Di

in Equation (4) is a 3-by-N matrix such that the three entries of Diσ represent Di , (D
(1)
i ;D

(2)
i ;D

(3)
i ),
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where D
(1)
i , D

(2)
i , and D

(3)
i are discrete differences along the x, y, and z directions. As such, D(1), D(2),

and D(3) contain, respectively, the first, second, and third rows of Di for all i. In the rest of this paper,
we let || · || = || · ||2.

3. 3D-TV ALGORITHM BASED ON SPLIT-BREGMAN ITERATION

Solving Equation (3) is not straightforward, so a variable splitting algorithm is introduced to solve
the equation [29]. We formulate the regularized matrix recovery scheme as a constrained minimization
problem using variable splitting:

σ∗ = argmin
σ,S

||Jσ − V ||2 + λ
∑
i

||Si|| such that Si = Diσ; (5)

Here, Si is an auxiliary variable, which is also determined during the optimization process. The
fundamental principle behind the Split-Bregman method is that the constrained optimization problem
is simpler to solve than its unconstrained version, specified by Equation (3). We solve Equation (5)
using the penalty method, where we minimize

Dβ(σ, Si) = ||Jσ − V ||2 + λ
∑
i

||Si||+
β

2

∑
i

||Diσ − Si||2 (6)

The third term of (6) is the penalties introduced to enforce the constraints Si = Diσ. The solution
of problem (6) tends to that of (5), when β → ∞. The selection of λ plays a crucial role in balancing
data fitting and structural constraints, and it has a significant impact on the solution of optimization
problems. It influences the sparsity of the final solution and the level of model simplification.

We solve (6) using a two-step alternating minimization scheme, assuming that the remaining
variables are known in order to solve for one variable of interest:

σn+1 = argmin
σ

∥Jσ − V ∥2 + β

2

∑
i

∥Diσ − Si,n∥2 (7)

Si,n+1 = argmin
{Si}

∑
i

∥Diσn+1 − Si∥2 +
2λ

β

∑
i

∥Si∥ (8)

The first sub-problem (7) is quadratic and hence can be solved analytically as:

σn+1 =

(
JTJ +

β

2

∑
i

DT
i Di

)−1(
JTV +

β

2

∑
i

Si

)
= T (Si) (9)

where the operator Qi is defined as Qi(σ) = Diσ. Then Equation (7) is solved using a few conjugate
gradient steps.

The solution to the second sub-problem (8) requires the joint processing of all the terms Qi (σn+1),

so that the magnitude, specified by
∑
i
∥Qi (σn+1)∥2, is reduced:

Si,n+1 =
Di (σn+1)∑

i
∥Di (σn+1)∥2

·

(∑
i

∥Di (σn+1)∥2 −
λ

β

)
+

= κλ/β (σn+1) (10)

This approach is termed as multidimensional shrinkage of Qi (σn+1) [30, 31]. Note that Table 1
involves two loops in the algorithm. The parameter β is incremented in the outer loop, while the
minimization of Dβ(σSi) is performed in the inner loop. We terminate the inner iteration when the
stopping criterion, specified by

dn =

∣∣∣∣Dβp(σn)−Dβp(σn−1)

Dβp(σn)

∣∣∣∣ < TOLERANCE (11)

is satisfied.
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Table 1. The procedure of the 3D-TV algorithm for EIT reconstruction is summarized.

4. 3D MODEL BUILDING

CT scanning sequences of rat lungs were acquired using a CT scanner (Siemens SOMATOM Force
dual source CT) (Figure 1), providing valuable information about the internal structure of the rats. A
three-dimensional model of the rat thorax was developed based on these CT data.

Figure 2 illustrates the specific workflow for constructing the 3D thoracic model of the rat. The
model has been simplified to include only the lungs within the thorax cavity. Lung and thorax contours
are extracted based on the Maximum Interclass Variance algorithm [32] and superimposed to obtain
a preliminary model of thorax. Firstly, the contours of the chest and lungs are extracted using the
algorithm. Subsequently, the contours are overlaid to construct a preliminary chest model of the rat’s
thoracic cavity and lungs in Mimics (Mimics Medical 21.0). SolidWorks (SolidWorks 2020) can be
employed to perform model smoothing, thereby enabling the acquisition of stable solutions in forward
problems. Finally, the thoracic model and lung model are imported into COMSOL Multiphysics
(COMSOL Multiphysics 5.4) to solve the forward problem of EIT.

The 3D rat thorax model is established in Figure 3. We distributed a single ring of 16 electrodes
evenly around the rat thorax. Experimental determination of the electrical conductivity for biological
tissues was performed. The electrical conductivities for rat pulmonary and non-pulmonary tissues are
set to 0.12 S/m and 0.48 S/m, respectively.

The Finite Element Method (FEM) was used to solve the forward problem. The resulting mesh of
the 3D thorax model was created by COMSOL and consisted of 45917 first-order tetrahedral domain
elements (Figure 4).

Figure 1. CT scans of rat.
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Figure 2. Steps for constructing a three-dimensional rat chest model.

Figure 3. 3D rat thorax model. Figure 4. FEM of 3D thorax model.

Based on the three-dimensional effect of the electric field, it is possible to reconstruct images both
within and outside a measurement plane from the measured results on an electrode plane. Figure 5
shows the current density images of finite element simulations with complex conductivity distributions
at four excitation locations. It can be seen that the current is distributed throughout the 3D lung, so
that 3D lung information can be extracted from EIT measurements using a single-ring electrode. In
the plane where the electrodes are located, the current density is high. The current density decreases
with increasing distance from the electrode plane.

To obtain the 3D reconstruction result, the images could be reconstructed onto multiple voxel layers
perpendicular to the z-axis with the measurements from the single-ring electrode plane [33]. Considering
the memory limits and speed requirements, there are 45 reconstruction layers in the 3D reconstructed
image, and each layer has a resolution of 32× 32. The reconstruction layer separation is 0.5mm. The
3D mesh for the inverse problem is shown in Figure 6.
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(a) (b)

(c) (d)

Figure 5. Current density distribution in a 3D model of the rat thorax: (a) excitation electrode on
the left side of the thorax; (b) excitation electrode in the front of the thorax; (c) excitation electrode
on the right side of the thorax; (d) excitation electrode in the back of the thorax.

Figure 6. Voxel mesh for solving inverse problem.

5. NUMERICAL SIMULATION AND RECONSTRUCTION

This section presents the parameter selection strategy and methodology of the 3D-TV algorithm based
on the 3D thoracic model of the rat. By conducting imaging of the rat lungs, a thorough analysis of
the reconstruction results obtained through this approach is performed.

5.1. Selection of Parameters for the 3D-TV Algorithm

This section focuses on the parameter selection issue of the 3D-TV algorithm through numerical
simulation-based investigations.
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5.1.1. Iteration Number

In this section, a comparison was made among the CG algorithm, traditional TV regularization
algorithm, and 3D-TV regularization algorithm in terms of their impact on the quality of lung
reconstruction images at different iteration steps. The relative error (RE) and Residual were utilized
to assess the image reconstruction quality. The RE is used to measure the difference between the
reconstructed image and the original image, while the Residual is used to quantify the difference between
the reconstructed image and the measured data.

RE =

∥∥∥∥∥
N∑
i=1

(σi − σ∗
i )

∥∥∥∥∥
2

N∑
i=1

σ∗
i

(12)

Residual = ||V − Jσ||22 (13)

where σi is the reconstructed conductivity of the ith voxel, σ∗
i the truth value, and N the number of

voxels.
In order to evaluate the accuracy of the obtained results, we performed quantitative calculations of

the RE values and Residuals defined at each iteration step. The RE and Residual curves are provided
in Figure 7 to compare the convergence rates of the three methods. The curves in Figure 7 demonstrate
that the 3D-TV method converges much faster than the other two methods. Considering both accuracy
and efficiency factors, we empirically determined the number of iteration steps for the 3D-TV method
to be 50.

(a) (b)

Figure 7. Comparing convergence rates of reconstruction algorithms at end-inspiration status.

5.1.2. Regularization Parameter

The weight of the regularization parameter λ is crucial. When the number of iterations in this article
is selected as 50, the influence of the regularization parameter of the 3D-TV method on the RE value
of the reconstructed image is shown in Figure 8.

According to Figure 8, it can be seen that with the constant change of the regularization parameter,
the RE value of the reconstructed image gradually decreases and reaches the minimum value when
the regularization parameter is 1e-16. The RE value then increases slightly and remains unchanged.
Therefore, the regularization parameter of the 3D-TV method is chosen to be 1e-16 during the EIT
reconstruction.

5.2. 2D and 3D Reconstruction Results of Rat Lung

EIT images were generated for rat lungs using different algorithms. Lung areas were divided into 31
horizontal layers (from the 9th to the 39th layer of the entire model). Figure 9 displays eight image
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Figure 8. The influence of the choice of regularization parameters on RE.

Figure 9. 2-D lung images reconstructed using three algorithms.

slices of rat lungs reconstructed using different algorithms. The images are presented in order from
bottom to top according to the simulation model, which includes the lung region. It is evident that all
three algorithms effectively capture changes in the lung area in 3D dimensions. While both TV and
3D-TV methods demonstrate edge-preserving effects, the 3D-TV method exhibits superior lung volume
distinction.

As shown in Figure 10, the 3D reconstruction of rat lung is achieved by the CG algorithm,
traditional TV algorithm, and 3D-TV algorithm, respectively. We explored the internal structure of the
thoracic cavity in-depth by providing coronal and sagittal slices of the three-dimensional reconstructed
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Figure 10. 3D lung of rat reconstruction results based on simulation data.

images. According to the reconstruction results in Figure 10, 3D lung volumes could be shown. The
reconstruction results of the CG method and traditional TV regularization method have artifacts in
the entire lung area or near the electrodes, while the reconstruction results of the 3D-TV method, as
compared to CG and traditional TV methods, have shown improved edge-preserving performance in
the inversion results.

5.3. Analysis of 3D EIT Reconstruction Results

In this section, the analysis of three-dimensional EIT reconstruction results was conducted using lung
volume, Correlation Coefficient (CC) and Structural Similarity Index Measurement (SSIM).

5.3.1. Lung Volume

One of the main advantages of 3D EIT is its potential to capture regional lung activity inhomogeneities
within a volume. To analyze lung volumes from 3D EIT data, we conducted a study on rat lung volume
using the Lung Region Ratio (LRR). Based on 3D reconstructed images, the LRR values for rat lung
is calculated according to (14) and given in Table 2.

LRR =
V A

TA+ V A
(14)

Ventilated Area (VA) refers to the area of the lung that actively participates in ventilation. It
represents the portion of the lung that is involved in gas exchange during respiration. Thoracic Area
(TA) refers to the area outside the lung, which includes the rib cage and other structures of the thoracic
cavity. It represents the region surrounding the lung within the chest cavity. The LRR values from
reconstructed images are compared to those from real images by calculating the errors.

errorLRR = LRRrecons − LRRreal (15)

errorLRR represents the discrepancy or error between the LRRrecons obtained from the
reconstruction results and the true LRRreal obtained from the simulated model constructed through
CT scanning in Section 4. It quantifies the difference between the reconstructed LRR and the ground
truth LRR.

The LRR can provide information about the distribution of ventilation throughout the entire
thoracic cavity, allowing for the assessment of lung ventilation uniformity or abnormalities. From
Table 2, the LRR parameters estimated from the rat lung reconstruction results indicate that the
3D-TV method is most suitable for calculating lung ventilation.

Table 2. Comparison of LRR based on simulation data of rat.

Real CG TV 3D-TV

LRR 0.1364 0.1978 (0.0614) 0.1692 (0.0328) 0.1395 (0.0031)
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5.3.2. Correlation Coefficient

The Correlation Coefficient (CC) quantifies the correlation between the true model and the reconstructed
model [15]:

CC =
Cov(σtrue, σ̂)

Std (σtrue) ∗ Std(σ̂)
(16)

CC in the formula is computed by calculating the covariance (Cov) between the true model σtrue
and the estimated model σ̂. Here, Cov is used to quantify the correlation between the true model and
the reconstructed model. Std (σtrue) and Std(σ̂) respectively represent the standard deviations of the
true and reconstructed models, which are used for normalizing the covariance. The range of the CC
is between 0 and 1. When CC is closer to 1, the reconstructed results and the true model has higher
similarity. That means the reconstruction has greater accuracy.

5.3.3. Structural Similarity Index Measurement

The Structural Similarity Index Measurement (SSIM) is used to calculate the similarity between the
true model and the reconstructed image [33]:

SSIM =
(2µxµy + C1) (2σxy + C2)(
µ2
x+µ2

y + C1

) (
σ2
x+σ2

y + C2

) (17)

where µx and µy denote the mean values of x and y. σx and σy are standard deviations of images x
and y. σxy is the covariance of images x and y. C1 and C2 are constants, which are used to prevent the
divisor being 0. x is the ground truth conductivity, y is the estimated conductivity. A larger SSIM
value indicates a higher image similarity.

Figure 11 displays the calculated values of RE, CC, and SSIM based on the 3D reconstructed
images of the rat lungs.

Figure 11. The RE, CC and SSIM values based on 3D reconstructed images for rat lung.

From Figure 11, RE, CC and SSIM values of the rat lungs under different reconstruction
algorithms could be compared. Besides better visual quality of the images, the 3D-TV method has
the largest CC and SSIM values, which are closer to 1, compared to the CG and traditional TV
methods. This shows that the 3D-TV regularized reconstruction result is significantly improved in
reconstruction quality.

6. EXPERIMENTAL RESULTS

6.1. Animals and Groups

The animal experiments were conducted at the Institute of Radiation Medicine Chinese Academy
of Medical Sciences. The Sprague Dawley rat is an outbred multipurpose breed of albino rat used
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extensively in medical research because of its calmness and ease of handling. Thus we used SD rats for
pulmonary edema imaging experiment. The protocol was completed in 10 anesthetized male SD rats,
comprising 5 in group 1 (control) and 5 in group 2 (oleic acid). Mean body weight and length were,
respectively, 310± 6 g and 14.3± 0.6 cm in group 1 (control) and 308± 10 g and 14.5± 0.5 cm in group
2 (oleic acid).

6.2. Anesthesia and Instrumentation

The animals fasted overnight. A 3D rat thoracic model was constructed by performing CT scans on rats.
After the rat was successfully anesthetized using a gas anesthesia machine, the rat is placed in a supine
position and intubated using an endotracheal tube. The ventilator is set to a positive end-expiratory
pressure of 10.7 cmH2O and a tidal volume (VT ) of 4ml/kg for standardized ventilation (Figure 12).
The rat received 100% oxygen, and the respiratory rate is maintained at 80 breaths per minute [34, 35].

Figure 12. Ventilator parameter settings.

Experiments are performed on SD rats using the TGU-EIT system (Figure 13) [36]. The electrodes
are 10mm patch electrodes. After removing the hair around the rat thorax, an average of 16 electrodes
of equal size were placed around the rat thorax (Figure 14).

Figure 13. TGU-EIT system for rat experiment. Figure 14. Experimental rat and electrodes.

6.3. Experimental Protocol

The animals were divided into two experimental groups. The first group (control group) served as a
sham group and did not undergo pulmonary edema induction. In the second group (oleic acid group),
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pulmonary edema was induced indirectly through the vascular bed by intravenous application of oleic
acid. Oleic acid has a direct toxic effect on endothelial cells, leading to epithelial injury characterized
by swelling and necrosis formation [37]. As a result, there is a significant increase in pulmonary
microvascular permeability, leading to the leakage of protein-rich fluid into the interstitial space [38].

Baseline measurements were conducted on all healthy animals, and measurements were taken on
animals positioned at three different locations. To induce gravity-dependent redistribution of pulmonary
edema, the animals were rotated transversely along their longitudinal axis to achieve supine position,
left tilt of 45 degrees, and right tilt of 45 degrees, respectively.

After baseline measurements, the duration of pulmonary edema persisted for more than 20 minutes.
In group 1 (control group), standardized ventilation was continued and no pulmonary edema was
induced. In group 2 (oleic acid), the injection of oleic acid was repeated along the tail vein of the
rat until a total dose of 0.1ml/kg was achieved [39]. At the same time, a ventilator was used for
standardized ventilation.

After inducing lung injury for 20 minutes, we conducted continuous ventilation measurements on
the animals. Upon completing data acquisition, the animals were euthanized immediately during deep
anesthesia.

6.4. Data Collection

In the adjacent driving mode, a 50 kHz frequency and 5mA current signal were applied to a pair
of adjacent electrodes, and then the differential voltage was measured across the remaining adjacent
electrode pairs. For a single cycle of a 16-electrode EIT system, a total of 208 voltage measurements
can be obtained when all adjacent electrode pairs are excited [40]. Therefore, a collection of electrodes
were used for voltage measurement. The measurement data were collected at a particular moment of
end-inspiration. Differential imaging experiments of the whole process of standardized ventilation and
pulmonary edema were performed on rat in three defined body positions. 3D-TV algorithm was used
to generate 20 EIT images per second for each rat, representing breathing related regional changes of
impedance. EIT data acquisition was performed under baseline and injured lung conditions. Image
reconstruction and analysis of the collected voltage data were performed at the end of the experiment.

Figure 15 displays the voltage measurement sequences at the end-inspiration status for rats with
standardized ventilation and pulmonary edema, respectively. It can be seen that when the rat gets
pulmonary edema, the voltage collected by the electrodes is lower than that during standard ventilation.

Figure 15. Voltage comparison between standard ventilation and pulmonary edema.

6.5. Reconstruction Results of the 3D-TV Method

Similar to the simulation, the measurements from the single-ring electrode covered the reconstruction of
45 layers of the entire thorax. Figure 16 compares the CG, TV, and 3D-TV reconstructions of the lung
during standardized ventilation for the same rat. It can be seen that compared with the results obtained
by other methods, the reconstruction results of the 3D-TV method show good edge preservation effect
and ability of artifact removal.
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Figure 16. 3D lung of rat reconstruction results based on experimental data.

Figure 17. 3D reconstruction results at different
time points during standardized ventilation in rat.

Figure 18. 3D reconstruction results at different
time points during pulmonary edema in rat.

During the experimental process, we continued to observe the real-time imaging of the lungs in
rats with standardized ventilation and pulmonary edema at different time points. Figure 17 illustrates
the 3D-TV reconstructions of the lung at different time points during standardized ventilation for the
same rat. It can be seen that there is no significant change in the distribution of electrical impedance
in the lungs of rats. Figure 18 depicts the 3D-TV reconstructions of the lung at different time points
during the progression of pulmonary edema in the control group of rats. It can be seen that within 12
minutes after the injection of oleic acid, the distribution of electrical impedance in the lungs changed
significantly, indicating that with the development of pulmonary edema, the water content of the alveoli
increased, and the lung damage was aggravated. It can be inferred that the rat lung was significantly
edematous.

6.6. Data Processing of EIT Data and Calculation of Lung Water RatioEIT

In order to analyze the variation of lung impedance during pulmonary edema, the average impedances
of 2D and 3D EIT lung images at different time points during standardized ventilation and pulmonary
are calculated. Figure 19 presents the average impedance changes in the lungs of rats undergoing
standardized ventilation and pulmonary edema at various time points. It can be seen from Figure 19
that, compared to standard ventilation, the average voltage in rat lungs gradually decreased and
eventually stabilized with the development of pulmonary edema, indicating that the average impedance
of the rat lung gradually decreased. Once the rat lung became completely edema, the average impedance
no longer exhibited any changes.
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Figure 19. Average voltage of the whole rat lung at each time points during standard ventilation and
pulmonary edema.

Figure 20. Extracting tidal ventilation for the left and right lungs.

Tidal ventilation refers to the ventilation of the lungs that occurs during respiratory processes. The
tidal ventilation within the left and the right lungs were calculated as TV L and TV R based on the sum
of the voxels for each lung separately (Figure 20). By calculating the Imbalance Index IML−R, we can
assess the ratio between ventilation in the left and right lungs.

IML−R =

√
TV L −

√
TV R√

TV L +
√
TV R

(18)

With the baseline and pulmonary edema conditions, the imbalance coefficient (IML−R) was
calculated for each rat at each position, with +1 indicating only the left lung is ventilated (TV R = 0)
and −1 indicating only the right lung is ventilated (TV L = 0).

Body rotation or postural changes can affect the distribution of lung ventilation and pulmonary
edema in various ways. We utilized a dataset collected at three different positions (left tilt, horizontal,
and right tilt) to calculate the trend line (Figure 21) for standard ventilation and pulmonary edema,
assuming a distance of 0.5 on the x-axis between two successive positions. The parameter lung water
ratioEIT represents the slope of the trend line.

For healthy rats with standard ventilation, only the mechanical properties of air in the lungs need
to be considered. However, for rats with pulmonary edema, both the mechanical properties of air and
the fluid in the lungs need to be taken into account simultaneously. It can be seen from Figure 21(a)
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that the IML−R of left tilt is positive, indicating that the TV L is greater than that of the TV R. The
IML−R of right tilt is negative, indicating that the TV R is greater than that of the TV L, and the lung
water ratioEIT of standard ventilation is negative. It can be seen from Figure 21(b) that the IML−R

of left tilt is negative. Since pulmonary edema [41] is mainly distributed in the left lung according to
gravity, the TV L is less than that of the TV R for left tilt position. The IML−R of right tilt is positive
and due to gravity, pulmonary edema is mainly distributed in the right lung, the TV R is less than that
of the TV L, and the lung water ratioEIT of pulmonary edema is positive. It can be seen that the lung
water ratioEIT in rats with pulmonary edema was significantly increased compared with that during
standard ventilation, indicating that the content of lung water in the lungs increased.

(a) (b)

Figure 21. Lung water ratioEIT . (a) Conditions in standard ventilation. (b) Conditions in pulmonary
edema.

7. CONCLUSIONS

The Split-Bregman algorithm is used to solve 3D-TV problem for EIT image reconstruction. The
rat pulmonary edema experiment was carried out, and the whole process of rat pulmonary edema
was monitored through 3D EIT in real time. The experimental results show that 3D EIT could give
more information for the preoperative and postoperative lung conditions of patients in clinical practice
compared with traditional medical imaging techniques, e.g., CT.

In future work, 3D EIT images will be reconstructed under the framework of compressed sensing to
improve the real-time performance of dynamic EIT reconstruction. Considering the complexity of 3D
modeling, it is feasible to preestablish thoracic models based on standard anatomical configurations for
both forward and inverse calculations in clinical applications. The development of a multi-layer electrode
3D EIT system would be advantageous as it facilitates 3D reconstruction and regional lung ventilation
monitoring. Further research will also encompass 3D modeling incorporating geometric changes during
the respiratory and cardiac cycles to ensure comprehensive information capture.
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