Vol. 119
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-24
Global Optimization for Extinction Curve Reconstruction in Inverse Electromagnetic Scattering of Multiparticle Aggregates
By
Progress In Electromagnetics Research M, Vol. 119, 75-88, 2023
Abstract
Generalized Mie theory provides a theoretical solution to the extinction cross-section curve of an electromagnetic scattering event with a multiparticle aggregate, given the configurational information of the constituent particles. However, deducing the configuration of the aggregate from the extinction cross-section curve is a non-trivial inverse problem that can be cast as a global optimization problem. To address this challenge, we propose a computational scheme that combines global optimization search algorithms with a calculator known as the Generalized Multiparticle Mie-solution The scheme is tested using mock scattering cross-section curves based on randomly generated aggregate configurations. The scheme successfully reproduces the scattering curve by minimizing the discrepancy between the two scattering curves. However, the ground-truth configuration is not reproduced, as initially expected. This is due to the inability of the global optimization algorithm scheme used in the present work to correctly locate the global minimum in the high-dimensional parameter space.Nonetheless, the partial success of the proposed scheme to reconstruct the mock curves provides an instructive experience for future attempts to solve the inverse electromagnetic scattering problem by fine-tuning the present approach.
Citation
Ying Li Thong, and Tiem Leong Yoon, "Global Optimization for Extinction Curve Reconstruction in Inverse Electromagnetic Scattering of Multiparticle Aggregates," Progress In Electromagnetics Research M, Vol. 119, 75-88, 2023.
doi:10.2528/PIERM23052601
References

1. Gouesbet, G. and G. Grehan, Generalized Lorenz-Mie Theories, Springer, Berlin, 2011.
doi:10.1007/978-3-642-17194-9

2. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Annalen der Physik, Vol. 330, 377-445, 1908.
doi:10.1002/andp.19083300302

3. Liang, C. and Y. T. Lo, "Scattering by two spheres," Radio Science, Vol. 2, 1481-1495, 1967.
doi:10.1002/rds19672121481

4. Bruning, J. and Y. T. Lo, "Multiple scattering of EM waves by spheres. Part I --- Multipole expansion and ray-optical solutions," IEEE Transactions on Antennas and Propagation, Vol. 19, 378-390, 1971.
doi:10.1109/TAP.1971.1139944

5. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, Vol. 433, 599-614, 1991.

6. Mackowski, D. W. and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," JOSA A, Vol. 13, 2266-2278, 1996.
doi:10.1364/JOSAA.13.002266

7. Xu, Y.-L. and B. A. S. Gustafson, "A generalized multiparticle Mie-solution: Further experimental verification," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 70, 395-419, 2001.
doi:10.1016/S0022-4073(01)00019-X

8. Xu, Y.-L. and B. A. S. Gustafson, "Experimental and theoretical results of light scattering by aggregates of spheres," Applied Optics, Vol. 36, 8026-8030, 1997.
doi:10.1364/AO.36.008026

9. Xu, Y.-L., "Electromagnetic scattering by an aggregate of spheres: Asymmetry parameter," Physics Letters A, Vol. 249, 30-36, 1998.
doi:10.1016/S0375-9601(98)00708-7

10. Xu, Y.-L., "Electromagnetic scattering by an aggregate of spheres: Errata," Applied Optics, Vol. 37, 6494, 1998.
doi:10.1364/AO.37.006494

11. Xu, Y.-L. and R. T. Wang, "Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix," Physical Review E, Vol. 58, 3931-3948, 1998.
doi:10.1103/PhysRevE.58.3931

12. Xu, Y.-L., "Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories," Journal of Computational Physics, Vol. 139, 137-165, 1998.
doi:10.1006/jcph.1997.5867

13. Xu, Y.-L., B. A. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, "Calculation of the heat-source function in photophoresis of aggregated spheres," Physical Review E, Vol. 60, 2347-2365, 1999.
doi:10.1103/PhysRevE.60.2347

14. Jia, R., X. Zhang, F. Cui, G. Chen, H. Li, H. Peng, and S. Pei, "Machine-learning-based computationally efficient particle size distribution retrieval from bulk optical properties," Applied Optics, Vol. 59, 7284-7291, 2020.
doi:10.1364/AO.398364

15. Mitchell, M., "An Introduction to Genetic Algorithms," MIT Press, 1998.

16. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, 989, Addison-Wessley Publishing Co., Inc., MA, 1989.

17. Adams, B. M., W. J. Bohnhoff, K. R. Dalbey, et al. "Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.15 user's manual," Sandia Technical Report SAND2020-12495, November 2021.

18. Murata, T. and H. Ishibuchi, "MOGA: Multi-objective genetic algorithms," Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Vol. 1, 289, 1995.
doi:10.1109/ICEC.1995.489161

19. Eddy, J. and K. Lewis, "Effective generation of pareto sets using genetic programming," Proceedings of the ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2B, 783-791, 2001.

20. Eddy, J., "JEGA V 2.3. computer software,", USDOE, https://www.osti.gov//servlets/purl/1231173, Mar. 25, 2009.

21. Ng, W. C., T. L. Lim, and T. L. Yoon, "Investigation of melting dynamics of Hafnium clusters," Journal of Chemical Information and Modeling, Vol. 57, 517-528, 2017.
doi:10.1021/acs.jcim.6b00553

22. Ingber, L., "Simulated annealing: Practice versus theory," Mathematical and Computer Modelling, Vol. 18, 29-57, 1993.
doi:10.1016/0895-7177(93)90204-C

23. Wales, D. J. and J. P. K. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms," J. Phys. Chem. A, Vol. 101, 5111-5116, 1997.
doi:10.1021/jp970984n

24. Hsu, P. J. and S. K. Lai, "Structures of bimetallic clusters," The Journal of Chemical Physics, Vol. 124, 044711, 2006.
doi:10.1063/1.2147159