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Global Optimization for Extinction Curve Reconstruction in Inverse
Electromagnetic Scattering of Multiparticle Aggregates

Ying Li Thong and Tiem Leong Yoon*

Abstract—Generalized Mie theory provides a theoretical solution to the extinction cross-section
curve of an electromagnetic scattering event with a multiparticle aggregate, given the configurational
information of the constituent particles. However, deducing the configuration of the aggregate from the
extinction cross-section curve is a nontrivial inverse problem that can be cast as a global optimization
problem. To address this challenge, we propose a computational scheme that combines global
optimization search algorithms with a calculator known as the Generalized Multiparticle Mie-solution.
The scheme is tested using mock scattering cross-section curves based on randomly generated aggregate
configurations. The scheme successfully reproduces the scattering curve by minimizing the discrepancy
between the two scattering curves. However, the ground-truth configuration is not reproduced, as
initially expected. This is due to the inability of the global optimization algorithm scheme used in
the present work to correctly locate the global minimum in the high-dimensional parameter space.
Nonetheless, the partial success of the proposed scheme to reconstruct the mock curves provides an
instructive experience for future attempts to solve the inverse electromagnetic scattering problem by
fine-tuning the present approach.

1. INTRODUCTION

The scattering of electromagnetic (EM) radiation (such as in a microwave scattering experiment) with
an aggregate made up of spherical particles is a complicated process that could be modelled from first
principles within the framework of Maxwell’s equations. The solution to the general case of multiparticle
scattering for an arbitrary aggregate made up of spherical particles is referred to as the generalized Mie
theories (a.k.a. generalized Lorenz-Mie theories [1]). Generalized Mie theories provide a theoretical
solution to the optical responses of an EM scattering event with a multiparticle aggregate of nano- or
microscopic scales, such as the scatter, extinction, and absorption cross-section curves at a wavelength
and scattering angle. The simplest solution to this problem was proposed by Mie in 1908 for the
simplest case of a homogeneous sphere [2]. There are many rigorous models adopting different theoretical
approaches and at different levels of approximation to solve such a complex calculation in EM scattering,
e.g., [3–6].

The generalized multiparticle Mie-solution (GMM) [7–13] is an extension of Mie solution from a
single particle to the multiparticle case that provides an analytical far-field solution to electromagnetic
scattering by an aggregate of spheres in a fixed orientation. GMM was implemented as a freely
downloadable Fortran package by Yu-lin Xu (https://scattport.org/files/xu/codes.htm, assessed on 15
Dec. 2021). It can compute the optical responses of an EM scattering event with a multiparticle
aggregate, such as the extinction and absorption cross-sections of the scattered EM radiation as
a function of scattering angle at a fixed wavelength. The aggregate is assumed to be made of
nonintersecting homogeneous spheres embedded in a vacuum surrounding. GMM has been shown
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to provide impressive agreement with experimental results as compared with the Mie theory and
geometrical optics results [7]. The input information required by the GMM code includes the spatial
coordinates, common radius, both the real and complex refractive indices of each constituent particle
in the multi-particle aggregate. EM responses, such as the extinction cross-section σext, are returned as
outputs from a scattering event between an incident EM radiation and the aggregate.

Computationally, the GMM program can calculate the optical responses of an aggregate given
the configurational information of the constituent particles, such as the number, size, coordinates, and
common refractive indices. However, deducing the configuration of an aggregate from experimental
curves of optical responses is a highly nontrivial task, due to not only the immense computational
complexity involved but also the possible issues of non-uniqueness of the solutions. Examples of
computational schemes for performing this task can be found in the literature, such as those referenced
in [14]. The authors in [14] proposed an efficient numerical approach based on machine learning
and evolutionary algorithms to retrieve particle size distribution from bulk optical properties. This
problem is usually computationally expensive, but the authors overcame this issue by accelerating the
calculation of bulk optical properties through machine learning. They first used Mie scattering theory
to solve the forward scattering by particles assuming spherical particles, and then approximated it using
machine learning. The particle swarm optimization algorithm was applied to optimize the particle size
distribution parameters by minimizing the deviation between the target and simulated bulk optical
properties. Their approach was able to accurately predict the scattering efficiency for a specific size
distribution in approximately 0.5µs at a light computational cost.

Deducing the information of the aggregate configuration from the extinction cross-section curve
is essentially a specific type of electromagnetic inverse scattering problem, which can be formulated
as a global optimization problem. The main purpose of this article is to propose a computational
scheme that can solve the electromagnetic inverse scattering problem. The problem to solve is a
computational one, involving the integration of two independent ingredients: the generalized Mie
theories and a global optimizer (GO). The generalized Mie theories take care of the physics governing the
electromagnetic scattering process, while the global optimizer handles the computational optimization
aspects of the problem. The proposed scheme is a computational implementation that integrates a global
optimizer to search for solutions in the electromagnetic inverse scattering system in a high-dimensional
configurational space of the aggregates. This was considered a daunting task before the advent of
genetic algorithms for global optimization. Retrieving the configurational information of a multi-particle
aggregate from experimentally measured optical-response curves is of practical significance for realistic
applications. The computational scheme proposed in this work should be appreciated as a computational
innovation that makes use of well-established global optimization algorithms and theoretical theories.

2. METHODOLOGY

Conceptually, the computation of the electromagnetic inverse scattering problem as proposed in the
present scheme involves two conceptually distinct steps: curve reconstruction and comparison with
ground-truth configuration.

2.1. The Overall Conceptual Strategy

The first step, known as curve reconstruction, involves developing a working procedure to reproduce
an extinction cross-section curve (as a function of wavelength λ) from a random initial configuration.
This was achieved by coupling the GMM code with a global optimizer. The configurations obtained at
the end of the curve reconstruction process are expected to reproduce the given extinction cross-section
curve when being used as input to the GMM code. These configurations are denoted as the ‘optimized’
configurations for easy reference. However, it is important to note that the optimized configurations are
conceptually distinct from the ‘ground-truth’ configuration that originally produced the given extinction
cross-section curve. In a real-life scenario, the ‘ground-truth’ configuration and the extinction cross-
section curve are typically measured or obtained experimentally. The ‘ground-truth’ configuration is
known to be responsible for giving rise to the consequential extinction cross-section curve via some form
of theoretical principles such as generalized Mie theories. However, for the purpose of demonstrating the



Progress In Electromagnetics Research M, Vol. 119, 2023 77

proof of a working principle, the ‘ground-truth’ configurations were generated randomly in this study. To
mimic experimentally measured extinction cross-section curves, these ‘ground-truth’ configurations were
fed into the GMM code. The resulting extinction cross-section curves are denoted by the superscripted
symbol σmock

ext (λ), which indicates an extinction cross-section curve generated via the aforementioned
procedure (dubbed ‘mock data generation’). We shall refer to σmock

ext (λ) as the ‘mock experimental
curve’. The details of the mock data generation procedure will be explained in the later part of this
manuscript.

The second step, known as ‘comparison with ground-truth configuration’, involves comparing
the optimized configurations (obtained from the curve reconstruction step) to the ‘ground-truth’
configurations. The curve reconstruction computation takes in the σmock

ext (λ) curve as input but remains
blind with respect to the ‘ground-truth’ configuration. As such, the ‘optimized’ and ‘ground-truth’
configurations are two independent sets of configurations. If the scheme proposed in the present proof
of principle works, these two independent configurations should coincide with each other.

The solution to the electromagnetic inverse scattering problem proposed by the present scheme
is deemed successful if it passes both the curve reconstruction and comparison with ground-truth
configuration steps for any arbitrary σmock

ext (λ) curve. The conceptual flowchart of the computational
procedure to solve the specific type of electromagnetic inverse scattering problem proposed in this work
is elaborated in Figure 1.

Figure 1. The conceptual flowchart of the computational procedure to solve the specific type of
electromagnetic inverse scattering problem proposed in this paper.

2.2. The Global Optimizer

The computational tool in the curve reconstruction step comprises two integral components: ‘global
optimizer’ and ‘calculator’. The GMM code plays the role of the calculator. The function of the
GO is to guide the process of configuration generation such that when they are fed into the GMM
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calculator, they produce an extinction cross-section curve σext(λ) that progressively converges to a
given σmock

ext (λ). One of the global optimizers that can do this is Genetic Algorithm [15, 16], a stochastic
optimization technique inspired by natural selection. Essentially, the genetic algorithm operates by
creating a population of configurations that are iteratively evolved over multiple generations to maximize
the objective function, which measures the deviation between the σext(λ) curve obtained from the GMM
calculator and the target σmock

ext (λ) curve. The evolution of the population involves the application of
genetic operators to create new configurations that have a higher probability of producing a better
fitness value. The fittest configurations from each generation are selected to form the population of the
next generation, and this process is repeated until convergence to the desired target is achieved.

In the present study, the global optimization algorithms were adopted from the well-known
optimization package Dakota [17]. The optimization class capability in Dakota Optimization solvers
provides a convenient application interface (API) for coupling with an external ‘simulator’ (in Dakota
terminology), which is the GMM calculator in the present context. Dakota Optimization solvers
provide a selection of derivative-free global optimization algorithms that are suitable for the inverse
scattering problem being dealt with here, including the multiobjective genetic algorithm (MOGA) and
coliny pattern search.

MOGA [18] is a stochastic optimization algorithm that is based on the principles of natural selection.
It works by generating a population of candidate solutions, and then iteratively improving the population
by selecting the best solutions and recombining them to form new solutions. The MOGA in the Dakota
package [19] is provided by the JEGA library [20]. The MOGA in Dakota is a real-coded genetic
algorithm that inherits the strengths of the well-known and well-tested NSGA-II algorithm. It adds
additional features, such as Pareto dominance sorting and diversity maintenance to make it suitable for
a wide variety of optimization problems. Pareto dominance sorting ensures that the best solutions are
always at the top of the population, while diversity maintenance helps to prevent the algorithm from
converging to a single solution and finding a wider range of good solutions.

The keywords that control in the MOGA in Dakota include fitness type, replacement type,
convergence type, max iterations, max function evaluations, population size, initialization type,
crossover type, mutation type and convergence tolerance. To deploy the MOGA in the Dakota package
for solving our global optimization problem, the values to these parameters need to be set. A typical list
of MOGA parameters adopted in our calculations in the present work is as listed in Table 1. However,
the parameters used are by no means rigidly fixed. The exact values and child keyword for the keyword
types may have to be tuned based on a case-by-case basis to achieve convergence.

Table 1. Typical values of parameters used in the MOGA.

Keyword type Child keyword Value

fitness type merit function -

replacement type elitist -

convergence type average fitness tracker
percent change=0.1

num generations=60

max iterations 60000

max function evaluations 60000

population size 100

initialization type unique random

crossover type shuffle random

num parents=20

num offspring=15

crossover rate=15.0

mutation type replace uniform mutation rate=0.1

convergence tolerance - 1·e−5

final solutions - 1
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In Table 1, the three keywords fitness type, replacement type, and convergence type control the
evaluation of the new population in the MOGA in Dakota.

• The fitness type keyword specifies the type of fitness function to use. merit function is a scalar
function that evaluates the quality of a solution. The best solution is the one with the highest
merit function value.

• The replacement type keyword specifies the type of replacement strategy to use. The elitist strategy
only replaces the worst solutions in the population with new solutions. This ensures that the best
solutions are always preserved in the population.

• The convergence type keyword specifies the convergence criteria to use. average fitness tracker
monitors the average fitness of the population over time. The algorithm will terminate if the average
fitness does not change by more than the value specified by percent change and num generations.

The coliny pattern search is a stochastic optimization algorithm that is based on the principles
of pattern search. Pattern search is a deterministic optimization algorithm that works by iteratively
searching for the best solution in a neighborhood of the current solution. The algorithm extends pattern
search by introducing a stochastic element into the search process. This stochastic element allows the
algorithm to escape from local minima and find better solutions.

The above two algorithms offered in the Dakota package had been adopted in a hybrid mode.
To perform a hybrid search, we executed the MOGA for global optimization followed by the
coliny pattern search algorithm for local minimization search. This two-step approach is a recommended
method for performing global optimization in the Dakota manual (see Section 14.2 in the Dakota
manual [17]). As a technical note, the MOGA in the Dakota package can also be employed for
multiple objective global optimization. However, in our work, it was utilized for single objective global
optimization by setting the number of objective functions to one (i.e., by setting the keyword type in
the Dakota input script final solutions to an integer 1), which is essentially equivalent to the so-called
single-objective genetic algorithm (SOGA).

2.3. Procedure of Curve Reconstruction

We first downloaded the source code of GMM and compiled it to produce an executable named ‘gmm01f’.
This was the GMM calculator. It was then stitched into the Dakota package via the provided API by
following a step-by-step procedure described in the Dakota user manual [17]. The Dakota-GMMAPI was
successfully tested and assembled, and subsequently deployed on a Linux-based server to search for an
unknown configuration that produces a scattering curve σext(λ) with a globally minimized discrepancy
against the mock experimental curve σmock

ext (λ).
The objective function, also known as the fitness function, was the mean square error (MSE) σ2,

defined as follows:

σ2 =
1

Nλ

Nλ∑
i=0

[
σext (λi)− σmock

ext (λi)
]2

. (1)

Here, λi, i ∈ {0, 1, ..., Nλ} are the Nλ discrete values at which the wavelength λ in σext(λ) was sampled.
The value of σ2 quantifies the discrepancy between the scattering curves produced by Dakota-GMM
and the mock experimental data. Both of the σmock

ext (λ) and any intermediate σext(λ) curves produced

by the GMM calculator were normalized as
∑Nλ

i=0 σext(λi) =
∑Nλ

i=0 σ
mock
ext (λ) = 1.

The GMM calculator requires a set of numerical inputs to produce an output σext(λ). These
inputs include the 3N spatial coordinates of the constituent particles {xi, yi, zi}, where i ∈ {1, 2, ..., N},
with N being the number of particles making up the aggregate; r, n, κ are the common radius,
real and imaginary refractive indices of the constituent particles, respectively. From a numerical
perspective, σ2 is a function of a set of variables {xi, yi, zi; r, n, κ,N}, where i ∈ {1, 2, ..., N}, such
that σ2 = σ2({xi, yi, zi; r, n, κ,N}). The total number of independent free variables in σ2 is 3N + 4.
Given the set of variables {xi, yi, zi; r, n, κ,N}, the GMM calculator will produce a list of output optical
responses, one of which is σext(λ), based on the solution scheme encoded into GMM for the generalized
Mie theories. In the most general scenario, Dakota performs a global minimum search for σ2 in the
(3N +4)-dimensional parameter space. However, to simplify the establishment of the working principle
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proposed in this work, r, n, κ and N were treated as known parameters and not treated as unknown
variables for global minimization. This reduced the parameter space to a 3N -dimensional space, such
that σ2 = σ2 ({xi, yi, zi}) where i ∈ {1, 2, ..., N}.

In an iterative loop, the Dakota derivative-free global optimization algorithm generated a random
configuration set {x1, y1, z1;x2, y2, z2; ...;xN , yN , zN} to feed into the GMM calculator. Note that the
trial configurations, {xi, yi, zi} , i ∈ N , play the role of ‘chromosome’ in genetic algorithm (GA). The
objective function, i.e., the trial extinction cross-section curve σext(λ) in Eq. (1), was calculated by the
GMM calculator based on these ‘chromosomes’. The resultant σ2 was fed back into Dakota. Taking
the hint from the feedback σ2 value, the global optimization algorithm would generate an improved
set of configuration {x1, y1, z1;x2, y2, z2; ...;xN , yN , zN}′ based on the prescribed algorithm built into
the global optimizer. As the iteration was looped, the predicted curve by GMM, σext(λ), progressively
converged into the mock curve σmock

ext (λ) due to the operation of global minimization, in which the
value of σ2 was minimized as a function of the 3N coordinate variables. As a technical note, the
GMM code did not always return a converged output, i.e., a σext(λ) curve, for any arbitrary set
of input, {xi, yi, zi; r, n, κ,N}. This situation occurred, for example, when the constituent particles
overlapped, or some physical constraints built into the GMM code were violated. When the GO
generated a configuration that was not convergent upon feeding it into the GMM calculator, a high
value of σ2 = 99999 was artificially assigned. This represented a high penalty to the objective function,
hence reminding the GO such a configuration was unfavorable and should be avoided in the following
rounds of iteration.

The mock data generation procedure, alluded to in earlier paragraphs, generated a collection of
random configurations {xi, yi, zi}ground−truth and the corresponding σmock

ext (λ) curves. σmock
ext (λ) were

generated based on randomly generated configurations using the GMM calculator to mimic experimental
data. A good collection of σmock

ext (λ) samples with a variety of trends and features was required to
establish the proof of principle that the Dakota-GMM scheme could always attain a successful curve
reproduction, and not restricted to only featureless, approximately flat σmock

ext (λ). To this end, a
Python script was written to generate a collection of random configurations {xi, yi, zi}ground−truth , i ∈
{1, 2, ..., N} where N is the number of particles and r the value of the common radius of the constituent
particles (in nm), while n, κ were arbitrarily selected from the range of 1.05–10.5. {xi, yi, zi}ground−truth

were generated by randomly chosen from the lattice sites of a hexagonal close-packed (HCP) system such
that each particle shared at least one closest neighbor in contact and no individual particle was detached
from the bulk. A σmock

ext (λ) curve generated via the mock data generation procedure was characterized
by a set of parameter values {r, n, κ,N}. The apparently unphysical values selected for n and κ were
not meant to bear any physical significance but merely a convenient choice for producing a collection of
σmock
ext (λ) curves with more varying trends and features. It was found that the σmock

ext (λ) curves produced
by the GMM calculator were rather flat, featureless, and insensitive for most of the values of r, n, and
N , and for small values of κ despite the randomness in the {xi, yi, zi}ground−truth configuration. The

feature in the trend of σmock
ext (λ) curves in different {xi, yi, zi}ground−truth configurations became more

varied (in the sense that they deviate away from an approximately flat, featureless straight line) for
large (despite unphysical) value of κ. Selected samples of σmock

ext (λ) curves are as displayed in plot (a)
in Figs. 3–5 in the Results and Discussion section.

To initiate a global minimization search, the Dakota code required a random set of coordinates
{xi, yi, zi}. These initial guesses were randomly generated within an interval −L/2 ≤ xi, yi, zi ≤ L/2,

where L = Nb · (2r ·N
1
3 ), Nb a positive integer suitably set as Nb = 3. Such a choice of L, which is a

function of L = L(r,N), corresponds to a square box of side L that could comfortably accommodate
an aggregate made up of N constituent particles with a common radius r, assuming that the particles
did not line up bumper-to-bumper forming a straight chain (if this were the case the L

2 × L
2 square box

would not be able to contain the aggregate). For example, for N = 14, r = 100 nm, the upper and
lower limits were ±L/2 = ±723 nm. In the Dakota input script, [−L/2, L/2] were set as the lower and
upper limits of {xi, yi, zi} while they were being searched. The GO would search for the best values of
{xi, yi, zi} within [−L/2, L/2] by minimizing σ2 with respect to {xi, yi, zi}. When the GO iteration was
completed, the coordinates of the resultant ‘optimized configurations’ produced by the Dakota-GMM
API were restricted to lie within [−L/2, L/2]. It is to be noted that the lower and upper limits for
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the GO search need not strictly abide by the above prescription as long as these limits are sufficiently
large to cover the smallest and largest coordinates in the ground-truth configuration. Essentially, the
limits set in the GO search have to be such that they must cover the smallest and largest values of
the coordinates in the ground-truth configuration, so that the resultant optimized configuration was
numerically possible to be matched with that from the ground-truth ones, if at all. Having said that
the limits must not be excessively large to overburden the global optimization search. An unnecessarily
large box size could run into pragmatic issues such as inefficiency and over expensive computational
cost in reaching the global optimization goal.

Ideally, σ2 should be suppressed to as close to zero as possible by setting the iterative loop to run as
long as practically feasible. However, in practice, it is only necessary to suppress the MSE to a reasonably
low value above zero, say, σ2

tol ∼ 10−3. Using the MOGA together with the coliny pattern search method
in a hybrid mode, a typical global optimization search for up to a maximum of 60000 steps would arrive
at a value of σ2 ≈ σ2

tol. In practice, convergence could be achieved much earlier than the maximal step
of 60000.

It is possible, if desired, to hit a value of σ2 lower than σ2
tol if further fine-tuning to the parameters

in the GO was pursued. In the present work, a curve reproduction was deemed successful if a completed
global optimization search hits an MSE value of less than σ2

tol = 0.0015, an arbitrary but reasonable

criterion. It was found that, given any arbitrary σmock
ext (λ) curve, a global optimization search did not

always successfully return an MSE that fulfills the σ2
tol criteria. Often manual tweaking of the parameters

used in the MOGA or coliny pattern search algorithms had to be carried out on a case-by-case basis
before a successful curve reproduction could be attained for any σmock

ext (λ) curve. The scope of the present
work is limited to using only MOGA and coliny pattern search methods. Despite the possibility that a
highly suppressed MSE could in principle be achieved with other suitable derivative-free global search
methods offered in the Dakota package, these options were not explored since the two methods (MOGA
and coliny pattern search) were sufficient to demonstrate the working principle of the present approach.

2.4. Procedure of Comparison with Ground-Truth Configuration

In the ‘comparison with ground-truth configuration’ step, the optimized configuration produced by the
Dakota (which corresponds to the best σext curve overlapping maximally with the mock experimental
curve) was retrieved from the output data to quantitatively compare with the ground-truth configuration
corresponds to the mock experimental curve. The comparison was quantified in terms of a similarity
index (s.i.), s, defined via [21]

s =
1

N

N∑
i=1

(ki + 1)−1, ki =
∣∣∣√di,1 −

√
di,0

∣∣∣ , (2)

where di,0 and di,1 represent the sorted distance of particles relative to the average positions (center
of mass) in the aggregates label ‘0’ and ‘1’, respectively; N corresponds to the number of particles;
and the subscript i indexes the particles in the aggregate. Here, ‘0’ is identified as the ground-truth
configuration while ‘1’ is the transient configuration generated during the global optimization search.
s → 0 means that the two configurations in the comparison have little configurational similarity, while
s → 1 infers that the two configurations coincide with each other. Note that the definition of s in
Eq. (2) is independent of the orientation of both aggregates ‘0’ and ‘1’ in 3D space.

Upon completion of a successful global optimization search, a set of optimized results were obtained,
including a minimized value of the mean square error (MSE) σ2, an optimized extinction cross-section
curve σext(λ) that maximally coincided with the mock experimental curve σmock

ext (λ), and a corresponding
optimized configuration {xi, yi, zi}optimized. The MSE σ2 was pushed below a tolerance of σ2

tol. Visual

inspection of the optimized σext(λ) overlapped with σmock
ext (λ) showed two curves that were maximally

coincidental, providing intuitive assurance that the global optimization capability offered by the hybrid
MOGA + coliny pattern search algorithms (see, for example, plot (a) in Figs. 3–5 in the Results
and Discussion section) had successfully minimized σ2. The optimized σext(λ) curve was visually
inspected alongside σmock

ext (λ), revealing two curves that were highly coincidental. This provided intuitive
assurance that the hybrid MOGA + coliny pattern search algorithms, which were employed for global
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Figure 2. Flowchart of the Dakota-GMM scheme (assuming no manual tweaking of the parameters in
the GO are required). This is a more technical version of the flowchart in Fig. 1.

optimization, had effectively minimized σ2. A sample plot (a) in Figs. 3–5 presented in the Results and
Discussion section exemplifies this outcome. The similarity index s was used to measure the difference
between {xi, yi, zi}optimized and {xi, yi, zi}ground−truth configurations. Intuitively, a highly suppressed

value of σ2 was expected to correspond to s → 1. A more technical version of the flowchart in Fig. 1 is
provided in Fig. 2 to summarize the Dakota-GMM scheme.

Note that r, n, κ,N are all known parameters that were fed into the GMM calculator in the global
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(a)

(b)

(c)

(d)

(e)

Figure 3. Numerical output for the mock data
set 1: {r, n, κ,N} = {125.0, 2.2, 8.5, 26}. (a)
σext(λ), σ

mock
ext (λ) on the same plot. (b) σext(λ)

vs. σmock
ext (λ) at common λi. (c) mse vs. iw. (d)

s.i. vs. iw. (e) s.i. vs. σ2. The inset in (c) and
(e) is a magnification near the minimum of σ2.
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(e)

Figure 4. Numerical output for the mock data
set 2: {r, n, κ,N} = {225, 1.25, 8.5, 14}. (a)
σext(λ), σ

mock
ext (λ) on the same plot. (b) σext(λ)

vs. σmock
ext (λ) at common λi. (c) mse vs. iw. (d)

s.i. vs. iw. (e) s.i. vs. σ2. The inset in (c) and
(e) is a magnification near the minimum of σ2.
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(a) (b)

(c) (d)

(e)

Figure 5. Numerical output for the mock data set 3: {r, n, κ,N} = {75.0, 1.05, 7.5, 18}. (a) σext(λ),
σmock
ext (λ) on the same plot. (b) σext(λ) vs. σ

mock
ext (λ) at common λi. (c) mse vs. iw. (d) s.i. vs. iw. (e)

s.i. vs. σ2. The inset in (c) is a magnification of the plot near the minimum of σ2.

minimization iteration. It is in principle possible to make these four as unknown variables in the global
minimization problem. But since we were aiming only to provide a proof of working principle to the
Dakota-GMM scheme for solving the specific type of electromagnetic inverse scattering problem, the
inclusion of r, n, κ,N as variables to be optimized by the global optimization search were not attempted
but postponed to future work.

To concisely explain the entire process of the workflow, we first generated a collection of
random N -particle mock aggregates with fixed radius, real, and complex refractive indices. The
corresponding extinction cross-section curve σmock

ext (λ) for each mock aggregate was calculated by feeding
its configurational and physical parameters into the GMM calculator. We then used the Dakota-GMM
API to perform a global optimization, initialized from a random configuration, to search for an optimized
trial configuration for which the corresponding objective function σ2 in Eq. (1) is strongly suppressed
to below a preset threshold. If a solution to the global optimization is found, the return consists of two
things: (i) An optimized trial curve σext(λ) that was quantitatively identical to the specific mock curve
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used in the definition of σ2, (ii) the corresponding trial configuration that produces the optimized trial
curve. Finally, a similarity index is calculated between the mock and optimized trial configurations
(based on Eq. (2)) to determine if their configurations matched with each other.

3. RESULTS AND DISCUSSION

In the present study, a series of optimized results, i.e., σext(λ), MSE (i.e., σ2); {xi, yi, zi}optimized and

similarity s had been obtained by feeding the Dakota-GMM API with mock data σmock
ext (λ) generated

via the mock data generation procedure. The results obtained are presented in this section.
We tested the Dakota-GMM scheme with random configurations containing different numbers of

constituent particles N and varying values of {r, n, κ}. We found that successful curve reproduction
was always possible with sufficient effort put into tweaking the parameters of the genetic algorithm.
To illustrate the working principle, we present three selected random configurations, but many other
successful runs shared similar characteristics to these demonstrative cases. We do not show the results
from other configurations, as their general characteristics were similar to those presented here. The
random mock configurations are characterized by the parameter set 1: {r, n, κ,N} = {125, 2.2, 8.5, 26},
set 2: {r, n, κ,N} = {225, 1.25, 8.5, 14}, and set 3: {r, n, κ,N} = {75, 1.05, 7.5, 18}. For each of these
configurations, a set of figures is presented to illustrate the essential features of the output generated by
the Dakota-GMM scheme along with the corresponding experimental mock curve. Each figure includes
scatter plots labeled as (a), (b), (c), (d), and (e).

(a) The final σext(λ) curve obtained at the end of the iteration overlaid on the same plot along with
the σmock

ext (λ) curve,

(b) σext(λ) vs. σ
mock
ext (λ) at each common λi,

(c) MSE (i.e., σ2) vs. iw. The inset displays the zoom-in version of the mse vs. iw plot near the
minimum of MSE.

(d) Similarity index (i.e., s.i.) vs. iw,

(e) s.i. vs. mse. The inset displays the zoom-in version of the s.i. vs. MSE plot near the minimum of
mse.

iw refers to the number of steps executed during the optimization search iteration. In Dakota
terminology, it is known as ‘number of function evaluation’. Figs. 3–5 display these plots for each
of these parameter sets.

The (a) and (b) plots in Figs. 3–5 show vividly that the Dakota-GMM had performed an excellent
curve reproduction as the mock and Dakota-produced curves coincide to a visually indistinguishable
degree. Quantitatively, the suppressed value of MSE listed in each plot labeled (a) is lower than σ2

tol.
In plot (b) where the optimized cross-section is plotted vs. the ground-truth cross-section, R-squared,
a statistical measure of how close the data are to the fitted regression line, shows R2 ≈ 1, inferring that
the two plots are numerically similar to each other to a high degree.

The (c) plot in Figs. 3–5 shows that as the search algorithm progressed, MSE would soon pass
through a threshold beyond which it is consistently driven into a minimum until it hits the stopping
criteria set in the Dakota script. The inset in the (c) plot displays a zoom-in detail of the MSE trajectory
near the convergent point. It is observed that the specific behavior of MSE dropping with iw differs
from case to case. A different choice of parameters used in the MOGA-coliny pattern search hybrid
mode also affected the specific behavior of MSE dropping with iw. Irrespective of how the MSE dropped
and converged, the MOGA and coliny pattern search in hybrid mode could always attain the objective
to fulfill the MSE tolerance of σ2

tol, provided that sufficient manual tweaking of the parameter-tuning
was attempted. There were many instances where the two global optimization algorithms initially
failed to obtain a suppressed MSE. However, finally, all such initially stubborn behavior was tamed
when sufficient manual effort was made to tweak the parameters. This observation infers that it is
generally possible to attain curve reconstruction for any arbitrary mock experimental curve with the
Dakota-GMM scheme.

At this juncture, it is appropriate to comment on the feasibility and reliability of the results of
the curve reconstruction, as illustrated in plots (a), (b) and (c) in Figs. 3–5. These were obtained as
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the solutions to the global optimization of minimizing the objective function, i.e., when the stopping
criterion σ2 < σ2

tol was achieved. Regardless of the detailed history of the evaluation of MSE vs. iw (as
shown in the (c) plots in Figs. 3–5), and the random initial configuration from which the search was
initiated, the output of the optimization procedure was in the form of an optimized σext(λ) curve that was
approximately identical to the target mock curve, σmock

ext (λ). The target mock curve σmock
ext (λ) was unique

for a given curve reconstruction case. In this sense, once the solution of the global optimization was
successfully produced at the end of an optimization search, it was unique for that curve reconstruction
case, regardless of the initial configuration or the parameters used in the hybrid global optimization
algorithm. The uniqueness of the solution to the curve reconstruction problem holds true for any
aggregate system, regardless of the variation in the physical parameters. Based on this reasoning, then
we can be confident that the solution shown in the illustrative results in plots (a), (b), and (c) in
Figs. 3–5 are feasible and reliable.

Plots (d) and (e) in Figs. 3–5 show the s.i. vs. iw and s.i. vs. MSE scatter plots, respectively.
The s.i. data points displayed were obtained via post-processing after the global optimization searches
process ended. The value of s.i. was never fed back into the global optimization loop because the
ground-truth configuration, which was the information required to calculate s.i., was not supposed
to be known by the global optimizer. Plots (d) and (e) reveal an unfortunate finding that despite
the Dakota-GMM scheme reproduces the mock experimental curves, it cannot reproduce the ground-
truth configuration. Based on the design of the Dakota-GMM scheme, the optimized configuration
at the end of the global optimization search, which successfully produces a curve closely similar to
the mock experimental curve (with an R-square close to 1), is intuitively expected to be identical to
the ground-truth one. However, the trajectory of s.i. displayed by the distribution of the data point
in plots (d) shows that during the process of working towards its objective to minimize the objective
function (i.e., MSE), the search algorithm causes the generated configurations to get locked into a
specific configuration space when iw proceeds beyond a threshold value indicated by a red arrow in
plots (c). At the indicated threshold iw, an abrupt drop in MSE occurs, indicating that the global
search algorithm has zoomed into a restricted region of parameter space to search for a minimized MSE
within it. Variation in the configurations generated within the restricted parameter space region beyond
the iw threshold becomes strongly suppressed, resulting in a ‘locked’ s.i., which is manifested in the
form of an approximately constant s.i. line seen in the (d) plots. The restricted region of the parameter
space it zooms in contains only the minimum for the MSE but not the ground-truth configuration. The
(e) plots provide another perspective of the s.i. trajectory as the MSE is being minimized. It shows that
the value of s.i. scatters randomly before the MSE passes the threshold iw. The (e) plots essentially
reveal that a minimized MSE is not correlated with the desired ground-truth configuration (otherwise
it would have shown the s.i. tending toward unity as MSE shrinks towards its local minimum). One can
envisage a repeated attempt to subject a mock curve for rebooted global optimization searches with a
new initial random configuration and random seed value, while the other parameters in the MOGA and
coliny pattern search are retained. In these rebooted runs, the same ‘lock-in’ scenario will still occur
(but perhaps in a different patch of parameter space). Once a global optimization search experiences
a lock-in beyond the threshold iw, and if the s.i. at the ‘entrance’ point is much less than unity, the
consecutive s.i. will hover around the same entrance value until the end of the search iteration, offering
no chance to hop out from the lock-in fate to hit a value of unity in the remaining search steps.

Based on the analysis of the data presented in Figs. 3–5, it is reasonable to conclude that there are
possibly many different configurations that could produce a numerically similar curve. In other words,
there is a lack of one-to-one correspondence between a curve and the configuration giving rise to it.
This situation should be true at least in the scenario where the MSE is only highly suppressed but not
exactly zero. At this point, it is not possible to tell whether a one-to-one correspondence between a
curve and its corresponding configuration could be established if a vanishing MSE were attained. The
hybrid global search algorithms attempted in the present scheme, with the stopping criteria set by σ2

tol
appear to unavoidably run into the fate of being trapped in a local minimum.
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4. CONCLUSION

To attain the reconstruction of a ground-truth configuration, one necessary requirement is to overcome
the local minima trapping issue. To this end, a more sophisticated global optimization searching scheme
is called for. It is envisaged that such an advanced search algorithm would hop to a new region in the
parameter space after locating a local minimum, in the spirit of ‘temperature annealing’ [22] or ‘basin
hopping’ [23], to undergo many rounds of strategic search until all local minimum encountered in the
entire (or nearly so) parameter space is exhausted. PTMBHGA [24] is one of the many advanced global
search algorithms published in the literature. It was used for identifying ground states of atomistic
clusters in a highly dimensional and complex potential energy surface (PES) of atomistic interaction
potential. Supplanting the global search algorithm with PTMBHGA could be a possible direction for
future attempts to fix the local minimum trapping issues encountered in the present Dakota-GMM
scheme.

As an independent consideration, there is speculation that incorporating multiple objective
functions, in addition to the objective function based on the extinction curve, may help overcome
the local minima trapping issue. For example, the GMM could produce other independent optical
responses such as scattering and absorption cross-sections, which could be used to define additional
objective functions. By making these objectives part of the multiple objectives that the MOGA aims
to minimize additional constraints, and discrimination capabilities could be introduced to the global
search. This could potentially resolve the problem of many different configurations sharing the same
mock curve and improve the search for an optimized configuration.
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