Vol. 103
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-11-05
Quantum Illumination Radar Using Polarization States of Photons in Atmosphere: Quantum Information Approach
By
Progress In Electromagnetics Research B, Vol. 103, 101-118, 2023
Abstract
The quantum illumination radar uses pairs of entangled photons to enhance the detection sensitivity of a reflecting target. In this paper, we worked on a quantum illumination radar using a pair of entangled photons in polarization in the microwave frequency range in the atmosphere. We studied the quantum information evolution modeling the propagation of a photon in the atmosphere while building two binary decision strategies for the QI radar. We focused on the quantum information evolution showing that the quantum discord representing quantum correlations beyond entanglement could represent an interesting resource to explore for the subject of quantum radar. In addition, we made an approximative estimation of the entanglement survival distance in the atmosphere. Results showed that an optimization should be found to favour the survival of quantum correlations or the signal-to-noise ratios calculated with the binary decision strategy.
Citation
Sylvain Borderieux, Arnaud Coatanhay, and Ali Khenchaf, "Quantum Illumination Radar Using Polarization States of Photons in Atmosphere: Quantum Information Approach," Progress In Electromagnetics Research B, Vol. 103, 101-118, 2023.
doi:10.2528/PIERB23051804
References

1. Lloyd, S., "Enhanced sensitivity of photodetection via quantum illumination," Science, Vol. 321, No. 5895, 1463-1465, September 2008.
doi:10.1126/science.1160627

2. Tan, S.-H., B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, "Quantum illumination with Gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, December 2008.
doi:10.1103/PhysRevLett.101.253601

3. Sorelli, G., N. Treps, F. Grosshans, and F. Boust, "Detecting a target with quantum entanglement," IEEE Aerospace and Electronic Systems Magazine, 2021.

4. Shapiro, J. H., "The quantum illumination story," arXiv:1910.12277 [quant-ph], December 2019, arXiv: 1910.12277.

5. Shapiro, J. H., "Microwave quantum radar’s alphabet soup: QI, QI-MPA, QCN, QCN-CR," 2021 IEEE Radar Conference (RadarConf21), 1-6, IEEE, Atlanta, GA, USA, May 2021.

6. Torrome, R. G., N. B. Bekhti-Winkel, and P. Knott, "Quantum illumination with multiple entangled photons," Advanced Quantum Technologies, Vol. 4, No. 11, 2100101, November 2021, arXiv:2008.09455 [quant-ph].
doi:10.1002/qute.202100101

7. Zhang, Z., S. Mouradian, F. N. C. Wong, and J. H. Shapiro, "Entanglement enchanced sensing in a lossy and noisy environment," Physical Review Letters, Vol. 114, No. 11, 110506, March 2015.
doi:10.1103/PhysRevLett.114.110506

8. Lopaeva, E. D., I. Ruo Berchera, I. P. Degiovanni, S. Olivares, G. Brida, and M. Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, April 2013.
doi:10.1103/PhysRevLett.110.153603

9. Fasolo, L., A. Greco, E. Enrico, F. Illuminati, R. L. Franco, D. Vitali, and P. Livreri, "Traveling wave parametric amplifiers as non-classical light source for microwave quantum illumination," Measurement: Sensors, Vol. 18, 100349, December 2021.
doi:10.1016/j.measen.2021.100349

10. Barzanjeh, Sh., M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, "Reversible optical to microwave quantum interface," Physical Review Letters, Vol. 109, No. 13, 130503, September 2012, arXiv: 1110.6215.
doi:10.1103/PhysRevLett.109.130503

11. Livreri, P., E. Enrico, L. Fasolo, A. Greco, A. Rettaroli, D. Vitali, A. Farina, F. Marchetti, and D. Giacomin, "Microwave quantum radar using a Josephson traveling wave parametric amplifier," 2022 IEEE Radar Conference (RadarConf22), 1-5, IEEE, New York City, NY, USA, March 2022.

12. Barzanjeh, S., S. Pirandola, D. Vitali, and J. M. Fink, "Microwave quantum illumination using a digital receiver," Science Advances, Vol. 6, No. 19, eabb0451, May 2020.
doi:10.1126/sciadv.abb0451

13. Barzanjeh, S., M. C. de Oliveira, and S. Pirandola, "Microwave photodetection with electro-optomechanical systems," arXiv:1410.4024 [quant-ph], October 2014, arXiv: 1410.4024.

14. Jo, Y., S. Lee, Y. S. Ihn, Z. Kim, and S.-Y. Lee, "Quantum illumination receiver using double homodyne detection," Physical Review Research, Vol. 3, No. 1, 013006, January 2021.
doi:10.1103/PhysRevResearch.3.013006

15. Weedbrook, C., S. Pirandola, J. Thompson, V. Vedral, and M. Gu, "How discord underlies the noise resilience of quantum illumination," New Journal of Physics, Vol. 18, No. 4, 043027, April 2016, arXiv: 1312.3332.
doi:10.1088/1367-2630/18/4/043027

16. Wilde, M., Quantum Information Theory, 2nd Ed., Cambridge University Press, Cambridge, UK; New York, OCLC: ocn973404322, 2017.

17. Hayashi, M., S. Ishizaka, A. Kawachi, G. Kimura, and T. Ogawa, "Introduction to quantum information science," Graduate Texts in Physics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

18. Ollivier, H. and W. H. Zurek, "Quantum discord: A measure of the quantumness of correlations," Physical Review Letters, Vol. 88, No. 1, 017901, December 2001.
doi:10.1103/PhysRevLett.88.017901

19. Streltsov, A., Quantum Correlations beyond Entanglement, Springer Briefs in Physics, Springer International Publishing, Cham, 2015.
doi:10.1007/978-3-319-09656-8

20. Emary, C., B. Trauzettel, and C. W. J. Beenakker, "Entangled microwave photons from quantum dots," Physical Review Letters, Vol. 95, No. 12, 127401, September 2005, arXiv:cond-mat/0502550.
doi:10.1103/PhysRevLett.95.127401

21. Kumano, H., K. Matsuda, S. Ekuni, H. Sasakura, and I. Suemune, "Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source," Optics Express, Vol. 19, No. 15, 14249, July 2011.
doi:10.1364/OE.19.014249

22. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets," Quantum Information Processing, Vol. 16, No. 1, 32, January 2017.
doi:10.1007/s11128-016-1494-6

23. Brandsema, M. J., "Formulation and analysis of the quantum radar cross section,", Ph.D. thesis, Pennsylvania State University, United States, 2017.
doi:10.1007/s11128-016-1494-6

24. Bavontaweepanya, R., "Effect of depolarizing noise on entangled photons," Journal of Physics: Conference Series, Vol. 1144, 012047, December 2018.
doi:10.1088/1742-6596/1144/1/012047

25. He, J. and L. Ye, "Protecting entanglement under depolarizing noise environment by using weak measurements," Physica A: Statistical Mechanics and Its Applications, Vol. 419, 7-13, February 2015.
doi:10.1016/j.physa.2014.09.051

26. Dehmani, M., H. Ez-Zahraouy, and A. Benyoussef, "Transmissions of quantum entangled states in anisotropic depolarizing channels," Journal of Russian Laser Research, Vol. 34, No. 1, 71-76, January 2013.
doi:10.1007/s10946-013-9326-y

27. Sk, R. and P. K. Panigrahi, "Protecting quantum coherence and entanglement in a correlated environment," Physica A: Statistical Mechanics and Its Applications, Vol. 596, 127129, June 2022.
doi:10.1016/j.physa.2022.127129

28. Wootters, W. K., "Entanglement of formation of an arbitrary state of two qubits," Physical Review Letters, Vol. 80, No. 10, 2245-2248, March 1998, arXiv: quant-ph/9709029.
doi:10.1103/PhysRevLett.80.2245

29. Henderson, L. and V. Vedral, "Classical, quantum and total correlations," Journal of Physics A: Mathematical and General, Vol. 34, No. 35, 6899-6905, September 2001, arXiv: quant-ph/0105028.
doi:10.1088/0305-4470/34/35/315

30. Liebe, H. J., "An updated model for millimeter wave propagation in moist air," Radio Science, Vol. 20, No. 5, 1069-1089, September 1985.
doi:10.1029/RS020i005p01069

31. Li, X., D.-W. Wu, C.-Y. Yang, W.-L. Li, and Q. Miao, "Quantitative analysis of decoherence of entangled microwave signals in free space," Quantum Information Processing, Vol. 18, No. 7, 200, July 2019.
doi:10.1007/s11128-019-2321-7

32. Navarrete-Benlloch, C., "An introduction to the formalism of quantum information with continuous variables," IOP Concise Physics, Morgan & Claypool, USA, 2015.

33. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, New York, 1976.

34. Werner, R. F., "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden variable model," Physical Review A, Vol. 40, No. 8, 4277-4281, October 1989.
doi:10.1103/PhysRevA.40.4277