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Quantum Illumination Radar Using Polarization States of Photons
in Atmosphere: Quantum Information Approach

Sylvain Borderieux*, Arnaud Coatanhay, and Ali Khenchaf

Abstract—The quantum illumination radar uses pairs of entangled photons to enhance the detection
sensitivity of a reflecting target. In this paper, we worked on a quantum illumination radar using a
pair of entangled photons in polarization in the microwave frequency range in the atmosphere. We
studied the quantum information evolution modeling the propagation of a photon in the atmosphere
while building two binary decision strategies for the QI radar. We focused on the quantum information
evolution showing that the quantum discord representing quantum correlations beyond entanglement
could represent an interesting resource to explore for the subject of quantum radar. In addition, we
made an approximative estimation of the entanglement survival distance in the atmosphere. Results
showed that an optimization should be found to favour the survival of quantum correlations or the
signal-to-noise ratios calculated with the binary decision strategy.

1. INTRODUCTION

In a founding article of 2008, Lloyd proposed a new idea of radar system: the quantum illumination (QI)
radar [1]. This type of quantum radar can theoretically surpass the sensitivity of a classical radar which
uses electromagnetic waves. This QI radar’s process is based on the entanglement between two photons
of which one is kept inside the radar system while the other propagates toward a reflecting object. The
photon is reflected by the object, and it potentially comes back in the radar. QI radar theoretically
provides an enhancement in detection sensitivity of a low-reflecting target immerging in a bright
thermal noise. Since Lloyd’s founding article, more studies have been performed. Theoretical articles
provided more information about the potentiality of QI radar (suitable quantum states of photons, QI
protocols, theoretical limitations) [2–7]. Experimental articles tried to develop quantum technologies
and protocols to build a quantum illumination device [8–14]. Nevertheless, there is currently no QI radar
system available. Research around the QI radar is motivated by the quantum advantage in sensitivity.
Surprisingly, this quantum advantage seems to be kept despite the entanglement vanishing due to the
decoherence during the propagation phase in a perturbative environment. Quantum correlations beyond
entanglement could explain this resilience to the propagation [15]. However, in the literature there is
a lack of study about the propagation phase and the environment influence in the QI radar. In this
paper, we specifically work on this subject using a quantum information theory approach including a
propagation model and a decision strategy for the QI radar.

In this work, we study the propagation phase using tools of quantum information theory, and we
include a binary decision strategy for the QI radar.

The QI radar uses pairs of entangled photons to work. As we seek for a QI radar in atmosphere,
we describe photons as qubits in polarization which is a natural choice in current several quantum
information processes [16, 17]. During the propagation phase, the emitted photon interacts with the
atmosphere which induces a decoherence of the pair of photons. This decoherence phenomenon destroys
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the initial entanglement and quantum correlations. It must be noted that decoherence is less important
in microwave range than in optics. Therefore, we focus our work on the microwave frequency range
to consider a progressive decoherence. We model the propagation phase using a depolarizing quantum
channel acting on the pair of entangled photons. Next, using a simplifying hypothesis between the
decoherence of the pair of photons and the attenuation of a classical electromagnetic wave, we give
approximate values of entanglement survival distances in atmosphere. To follow the entanglement and
quantum correlations during the propagation, we respectively use an entanglement rate and quantum
discord [18, 19]. In parallel of the propagation model and quantum information approach, we have
built two binary decision strategies in order to study the influence of the entanglement and quantum
correlations in the QI radar. The binary decision strategies are designed for the microwave frequency
range. The objective is to study the influence of entanglement and discord on the QI radar decision
scheme including the propagation phase of the emitted photon in an atmospheric environment.

This paper is organized in four sections. Section 2 gives the description of the QI radar, and
it presents the quantum information approach for the quantum radar. Section 3 presents the used
propagation model including calculations using tools of quantum information theory. Some of these
calculations are given in Appendix A. In Section 4, we present two binary decision strategies in parallel
of the propagation model. Both decision strategies take into account the thermal noise and the reflection
probability of the object (target). The first strategy is based on Lloyd’s decision strategy, and it does
not consider the propagation channel influence. The second strategy tries to study the distribution
of quantum correlations in the QI radar of three mentioned parameters: thermal noise, reflection
probability, and the channel influence. Finally, we conclude in Section 5.

2. DESCRIPTION OF THE QI RADAR ON POLARIZATION STATES

We explain here the principles of a QI radar and introduce the quantum information approach.

2.1. QI Radar on Polarization States

The QI radar protocol is divided is three steps in Figure 1 where we distinguish: emission, propagation
and reflection, reception. Step (1) consists in creating a pair of entangled photons inside the radar
system. In this paper, we work with polarization states of photons since it is commonly used to create
entangled states of photons [20, 21].

Step (2) is divided in two substeps because they occur simultaneously. In step (2.a), photon A
is kept inside the radar using a quantum memory while photon S is emitted through the atmosphere
in step (2.b). On one hand, the quantum memory protects the quantum state of photon A from any
perturbation like a partial measurement. The quantum state of photon A cannot be directly modified.
On the other hand, photon S propagates through the atmosphere before being reflected by the object.
It potentially comes back to the QI radar to perform the final step. Step (3) is the measurement
step. It consists in a joint measurement on the pair of photons AS. Such a measurement supposes to
synchronize the storage of photon A with the propagation duration of photon S. Such a synchronization
is an experimentally challenging task. Step (3) aims to test the position of the potential target. Thus,
we have to build a decision strategy for the QI radar.

In the QI radar, we use a pair of entangled photons AS. We work with two qubits in horizontal
and vertical polarization states, respectively, noted as |H⟩ and |V ⟩. In the basis of the two qubits
{|HH⟩, |HV ⟩, |V H⟩, |V V ⟩}, we consider generalized entangled states |Ψ±⟩AS = a|HV ⟩AS ± b|V H⟩AS

and |Φ±⟩AS = a|HH⟩AS ± b|V V ⟩AS with the normalization condition |a|2 + |b|2 = 1 where a, b ∈ R.
We have the quantum states {|Ψ±⟩, |Φ±⟩} ∈ HAS, where HAS = HA ⊗ HS is the Hilbert space of
states for the system AS. To perform the quantum information approach, we use the density matrices
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Figure 1. Description of the steps 1–3 of the QI radar protocol which combines a simple illustration
of a block diagram with a representation of the QI radar situation in the atmosphere.

ρ̂AS ∈ L(HAS) in Equation (1) where L(HAS) is the space of operators applied to HAS.

ρ̂Ψ
±

AS = |Ψ±⟩⟨Ψ±|AS =


0 0 0 0

0 a2 ±ab 0

0 ±ba b2 0

0 0 0 0

 (1a)

ρ̂Φ
±

AS = |Φ±⟩⟨Φ±|AS =


a2 0 0 ±ab

0 0 0 0

0 0 0 0

±ba 0 0 b2

 (1b)

Note that when a = b = 1/
√
2, we obtain Bell states which are maximally entangled states for the

two qubits [17]. The density operators in Equation (1) constitute the starting point of the quantum
information approach since they contain all available information about the quantum state of the pair
AS. It represents the basic tools to compute the quantum information evolution of our system.

2.2. Quantum Information Approach

For this study, we use tools of quantum information theory to follow the quantum information evolution
of the system of photons. For the quantum information approach of the QI radar, we need to make
approximations about the target’s response and propagation phase.

In this work, the target’s response is modeled by a reflection probability η ∈ [0, 1]. Note that
a theory of Quantum Radar Cross Section (QRCS) currently exists which considers simple geometry
shapes (rectangle, disc, triangle) [22]. This model consists in estimating how one incident photon
is reflected by a surface in a given direction [23]. The surface is represented by an organized grid of
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identical atoms. This QRCS model is built from the sum of interactions of the incident photon with each
atom of the grid. Thus, it gives a reflection probability in space depending on the illumination angle.
Furthermore, the object QRCS profile would be the same whether we used a pair of entangled photons
or single photons to illuminate the target [23]. From the point of view of quantum information theory,
the QRCS does not add information about the entanglement evolution or the quantum correlation
evolution. Consequently, we do not explicitly refer to the object’s shape. If we seek a phenomenological
approach of the photon-object interaction, we must use the Quantum Electrodynamics Theory (QED).
This is a very complex task. Such a study is not in the scope of this paper, so we have chosen to only
describe the photon-object interaction using a reflection probability.

In step (2.b) in Figure 1, we only send one photon to probe a region of atmosphere where there is
potentially a object. During its propagation, the emitted photon can be absorbed or scattered by an
atmospheric molecule. If photon S is absorbed, the entanglement of the pair AS is destroyed. In the
same way, if photon S is scattered by a molecule, it will propagate to infinity and could be absorbed
by another molecule later. In both cases, photon S cannot return to the QI radar. As a result, photon
S is lost from the QI radar point of view. The total loss of information exactly corresponds to what
exists in electromagnetic physics. In this article, we focus more specifically on the progressive loss of
information of the pair of entangled photons AS during the propagation phase of photon S. To follow
this evolution, we must suppose that photon S is not absorbed or scattered by atmospheric molecules
during the propagation. This is an important simplifying hypothesis. Nevertheless, photon S interacts
in the atmosphere which modifies the quantum state of the system AS. This decoherence phenomenon
destroys the initial entanglement and quantum correlations. We follow the entanglement rate with a
measure of entanglement and the rate of quantum correlations thanks to the quantum discord (see
Section 3). Note that they are two different quantities. A quantum system can have a non-zero discord
while the entanglement measure is zero.

In his article, Lloyd assumed that the initial entanglement is instantly lost in the environment [1].
In optics, this is a suitable approximation. However, decoherence is less important in the microwave
frequency range. Therefore, we can make the hypothesis that decoherence is low enough to follow the
quantum information evolution. To model the propagation in the atmosphere, we use a depolarizing
quantum channel on the pair of photons AS.

In the next section, we explain the propagation model in the atmosphere and the calculations using
quantum information theory.

3. PROPAGATION MODEL

In this section, we present the propagation model of photon S in the atmosphere using a parametric
quantum channel. We present calculations of the entanglement rate and the quantum discord using the
channel parameter. Using this propagation channel, we show how to link it to a classical attenuation
in order to give approximative survival distances of entanglement in the atmosphere.

In the QI radar protocol, only one photon is emitted, namely photon S. During its propagation,
photon S interacts with the atmosphere. It produces a decoherence phenomenon destroying the initial
entanglement of the pair of photons AS. To model the atmosphere action, we use a generalized
depolarizing quantum channel N defined by [24–27]:

N (ρ̂AS) =
4∑

i=1

K̂iρ̂ASK̂
†
i (2)

The Kraus operators {K̂i}i=1...4 define the action of the propagation environment on the quantum state

ρ̂S verifying the completeness condition
∑4

i=1 K̂
†
i K̂i = Î . Note that these operators only act on photon

S, not on photon A:

K̂1 =
√

1− γ
(
ÎA ⊗ ÎS

)
K̂2 =

√
γ

3

(
ÎA ⊗ σ̂x,S

)
(3a)

K̂3 =

√
γ

3

(
ÎA ⊗ σ̂y,S

)
K̂4 =

√
γ

3

(
ÎA ⊗ σ̂z,S

)
(3b)
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In Equation (3), the parameter γ ∈ [0, 1] is the strength of atmospheric influence on the system AS.
The matrices σ̂x, σ̂y, σ̂z are Pauli matrices acting on ρ̂S. Applying the depolarizing quantum channel on
the quantum states (1a) and (1b), we obtain:

ρ̂Ψ
±

AS,out =



2

3
γa2 0 0 0

0 (3− 2γ)
a2

3
±(3− 4γ)

ab

3
0

0 ±(3− 4γ)
ab

3
(3− 2γ)

b2

3

0 0 0
2

3
γb2


(4a)

ρ̂Φ
±

AS,out =



(3− 2γ)
a2

3
0 0 ±(3− 4γ)

ab

3

0
2

3
γa2 0 0

0 0
2

3
γb2 0

±(3− 4γ)
ab

3
0 0 (3− 2γ)

b2

3


(4b)

where Equations (4a) and (4b) are defined as functions of γ. The density matrices ρ̂Ψ
±

AS,out and ρ̂Φ
±

AS,out

contain all information about the quantum state of the pair AS. Using the parametric quantum channel,
we calculate the entanglement rate and the quantum correlation rate.

The entanglement rate E(ρ̂AS,out) is calculated with the entanglement of formation using the

concurrence of Wootters C(ρ̂AS,out) [28]. We have calculated the square-roots of eigenvalues {λ(i)
R }i=0...3

of the spin-flip matrix R = ρ̂AS,out(σ̂y ⊗ σ̂y)ρ̂
∗
AS,out(σ̂y ⊗ σ̂y) where ∗ is the complex conjugate, to obtain

the concurrence of Wootters:

C(ρ̂AS,out) = max

(
0,

√
λ
(2)
R −

√
λ
(1)
R −

√
λ
(1)
R −

√
λ
(3)
R

)
= max (0, 2ab(1− 2γ)) (5)

where λ
(1)
R has a multiplicity 2, and λ

(2)
R and λ

(3)
R have a multiplicity 1. The concurrence C(ρ̂AS,out) ∈ [0, 1]

is used in the binary entropy h(x) = −x log(x)− (1− x) log(1− x) with x = (1 +
√
1− C2(ρ̂AS,out))/2

to express the entanglement rate E(ρ̂AS,out) ≡ h(x) as function of γ in Figure 2.
Next, we compute the quantum correlation rate using the quantum discord δ(ρ̂AS,out) defined

by [18, 29]:

δ(ρ̂AS,out) = min
{M̂(i)

S }
[I(ρ̂AS,out)− J (ρ̂AS,out)] (6a)

= min
{M̂(i)

S }


I(ρ̂AS,out)︷ ︸︸ ︷

S(ρ̂A,out) + S(ρ̂S,out)− S(ρ̂AS,out)−
(
S(ρ̂A, out)− S(ρ̂A, out|ρ̂S, out){M̂(i)

S }

)
︸ ︷︷ ︸

J (ρ̂AS,out)

(6b)
where I(ρ̂AS,out) is the quantum mutual information, and J (ρ̂AS,out) is the classical information obtained

by projection measurements {M̂ (i)
S }i=H,V on the subsystem S [19]. Quantum discord represents quantum

correlations inside a system. It comes from the difference of the two definitions of mutual information. In
classical information theory, mutual information is written I(X;Y ) = I(Y |X) for two random variables
X and Y . In quantum information theory, these two definitions are no longer equal because we introduce
a quantum measurement on the system. Hence, quantum discord depends on the choice of measurements
on one of the subsystems A or S. Equation (6b) is the quantum discord δ(ρ̂AS,out) when measurements
are done on the subsystem S. It is represented in Figure 2. The calculations of Von Neumann entropies
of Equation (6b) are detailed in Appendix A.
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Figure 2. Concurrence of Wootters C(ρ̂AS, out), entanglement of formation E(ρ̂AS, out) and quantum
discord δ(ρ̂AS,out) as function of the damping parameter γ ∈ [0, 3/4].

In Figure 2, we observe the entanglement rate decay and quantum discord decay as function of γ.
The quantum correlation rate vanishes when γ = 3/4 while the entanglement rate already equals zero for
γ = 1/2. Hence, some quantum correlations survive longer than the entanglement to the depolarizing
channel action on the system AS. The range validity of the propagation model ends at γ = 3/4 because
from there the behavior of quantum correlations does not represent a consistent physical situation.

Now, using the quantum channel and a simplifying hypothesis of the photon-atmosphere interaction
we can estimate the survival distance for the entanglement and for the quantum discord in atmosphere.

The decoherence phenomenon comes from a progressive coupling between photon S and the different
molecules in the atmosphere (N2, O2, H2O, etc.) The channel parameter γ in Equation (3) is linked
to this coupling. We assume that the damping parameter γ depends on time, so we write it as
γ = 1 − e−κt [24]. The parameter κ represents the photon-atmosphere coupling, and it depends on
the atmosphere nature and the emission frequency of the QI radar. To estimate the coupling, we
suppose that κ traduces the density of interactions on the subsystem S with the ensemble of molecules
in the atmosphere. These molecules represent an ensemble of scatterers for the incident photon. We
can describe interactions between photon S and the molecules by the coupling between photon S and an
ensemble of harmonic oscillators in Figure 3. After a given propagation time, the initial entanglement
of the pair of photons AS disappears. Here, we consider a mean of all interactions with the different
molecules in the atmosphere to avoid a phenomenological study of the decoherence phenomenon. Please
note that setting a value to κ is theoretically and experimentally challenging. However, it is possible to
give an estimation in order to give a trend for the survival distance of entanglement in the atmosphere.

We make a simplifying hypothesis that the density of interactions is roughly proportional to the
classical attenuation of an electromagnetic wave in the microwave range. The parameter κ now depends
on atmospheric characteristics (temperature and absorption spectrum) as function of time t. Assuming
this proportionality link, we can write κ = LCAc where A is the attenuation in dB.km−1, and c is the
speed of light. The factor LC is a proportionality coefficient. We arbitrarily set LC = 1. Then, we
obtain the parameter γ as function of the propagation distance x: γ ≈ 1 − e−Act = 1 − e−Ax. The
classical attenuation in the atmosphere is estimated thanks to the MPM model†. As an example, we
plot an attenuation spectrum in Figure 4 using the MPM model.

From the parametric quantum channel, we can estimate the survival distance of the entanglement
and of the quantum correlations in the atmosphere. In our current model, the entanglement rate and
quantum discord respectively vanish for γlim = {1/2, 3/4}. To make an estimation of the survival

† This model is called MPM for “Millimeter-Wave Propagation Model” from the article [30].
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Figure 3. Density of interactions on photon S during the propagation phase inducing the initial
entanglement loss. The pair of photons AS is initially entangled on the left. During the propagation,
photon S interacts with the atmospheric molecules (N2, O2, H2O, etc.) that destroys entanglement. At
the end of the propagation phase, we get a not-entangled pair of photons on the right.

Figure 4. Attenuation A as function of frequency f ∈ [1, 1000]GHz, calculated from the MPM model
with T = 300K, a humidity rate of 50% and a pressure of 101.3 kPa.

distance, we write:

xmax = − ln |γlim − 1|
A

(7)

Using the MPM model to calculate the attenuation A (Figure 4), we have plotted the maximal survival
distance E(ρ̂AS,out) = 0 and δ(ρ̂AS,out) = 0 as function of the emission frequency f ∈ [1, 1000]GHz in
Figure 5. We present the direct calculus (solid lines) and an evolution trend (dashed lines). These curves
show a trend for the survival distance since we must not consider the absorption peaks of the MPM
model built with the absorption spectra of O2 and H2O. As we said before, we consider a mean of photon-
atmosphere interactions during the propagation phase. We observe that the survival distance xmax of
the entanglement rate and discord quickly drop when the emission frequency increases. Considering
Figure 5, we should choose an emission frequency range approximately below 100GHz to maximize the
survival distance of the entanglement and quantum discord.

As an example, for an emission frequency of f = 5GHz, the entanglement vanishes for x ≈ 70 km
whereas the quantum discord vanishes for x ≈ 140 km. For f = 10GHz, we have a vanishing
entanglement at x ≈ 35 km and a vanishing discord at x ≈ 70 km. To compare with the current
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Figure 5. Survival distances xmax for the entanglement rate E(ρ̂AS,out) and the quantum discord
δ(ρ̂AS,out) using the attenuation model MPM with the same parameters as Figure 4. Solid lines represent
calculations using raw datas from the MPM model. Dashed lines represent the evolution trend of
entanglement rate and discord obtained with the continuum of the spectrum calculated in Figure 4.
This continuum has been obtained excluding the attenuation range above 1 dB.km−1 including most of
absorption peaks to consider a mean of interactions between the incident photon and the atmosphere.
Numerical calculations have been made using Astropy and Specutils packages of the programming
language Python.

literature, another article performed a similar study using a phenomenological approach with a master
equation [31]. They found a vanishing entanglement around 85 km for an emission frequency of
f = 5GHz [31]. Compared to our results, we are in the same order of magnitude keeping in mind
that our model is quite simple because this is not a strict phenomenological approach. Indeed, we did
not model all interaction phenomena between the emitted photon and atmospheric molecules since we
consider a mean of all interactions represented by the parameter γ. The common thread with [31] is
the coupling coefficient with the propagation environment which depends on the classical atmospheric
attenuation A. However, note that they used an approach based on the continuous variable formalism
which consists in describing photons as states of the quantum electromagnetic field [32]. In this paper, we
work with the standard formalism of quantum information theory with discrete states [16, 17]. Despite
these differences, we obtain the same order of magnitude for the survival distance of entanglement in
the atmosphere. Although our propagation model is relatively simple, our results are consistent with
the scientific literature.

The propagation model only shows the entanglement loss in the atmosphere. However, in a QI
radar we need a decision strategy to detect a target. We present the decision strategies in the next
section.

4. DECISION STRATEGIES FOR THE QI RADAR

Here, we focus on the binary decision strategy. Currently, we only use a binary decision strategy which
consists in choosing if there is an object or not in the environment. In this paper, we use two binary
decision strategies based on Lloyd’s binary decision strategy [1, 33].

The first binary decision strategy in Section 4.1 considers the reflection probability of the object
and thermal noise. However, it does not take into account the propagation channel influence. The
second binary decision strategy in Section 4.2 tries to consider at once three parameters: the reflection
probability of the object, the thermal noise, and the channel influence. The objective is to find links
between the decision strategy and the survival of quantum correlations during the propagation phase.
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4.1. Standard Binary Strategy

This first binary decision strategy has been built in parallel of the propagation model. It does not take
into consideration the progressive disentanglement induced by the propagation environment.

The binary decision strategy relies on two hypotheses H0 and H1 which respectively correspond
to the absence and presence of a reflecting target in the atmospheric environment. We include two
parameters in this decision scheme. The first is the reflection probability of the object η ∈ [0, 1] because
we assume to not use the QRCS theory. The second is the thermal noise which represents all thermal
photons in a given emission frequency of the QI radar. As we use qubits in polarization states to describe
the quantum state of photons ρ̂AS in Equation (1), we model the thermal noise as an ensemble of qubits
ρ̂B in polarization states following a Bose-Einstein law n(ωi, T ) = (eβℏωi − 1)−1. In this expression, ωi

is the frequency, and the factor β = (kBT )
−1 depends on temperature T and Boltzmann constant kB.

We write the hypotheses H0 and H1 below.
In hypothesis H0, there is no object. The emitted photon S indefinitely propagates without being

reflected by the object. In practice, it can be either absorbed or scattered by atmospheric molecules
which means that the initial quantum correlations are lost. From the QI radar point of view, we have
lost this photon since it cannot come back in the receiver. In the case where the radar detects something,
we assume that the radar detects one photon per detection event, and it only sees one photon from the
thermal noise. We make the assumption that this photon has the same quantum state ρ̂B = ρ̂′S of the
emitted photon. As the thermal noise follows a Bose-Einstein law, the QI radar can detect one thermal
photon with a probability p = 1/n(ωi, T ). Hence, the state ρ̂A ⊗ ρ̂′S is not entangled, and it does not
have any quantum correlations. In another case, we can only obtain remaining qubits in a totally mixed
state ρ̂M = ρ̂A ⊗ ρ̂′S which corresponds to no detected signal. Hypothesis H0 takes the form:

ρ̂H0 = pρ̂A ⊗ ρ̂′S + (1− p)ρ̂M (8)

where we have ρ̂A = TrS{ρ̂AS} = diag(a2, b2), ρ̂′S = TrA{ρ̂AS} = diag(b2, a2), ρ̂M =

diag(a2b2, a4, b4, a2b2) with ρ̂AS = ρ̂Ψ
±

AS from Equation (1a).
In Equation (8), parameter p depends on the emission frequency f and environment temperature

T . Hypothesis H0 is valid only if f/T > ln(2)kB/h is true. As an example with T = 20◦C, the limiting
frequency is f ≈ 4.23 × 1012Hz. Therefore, it includes as intended the microwave frequency range
Iµ = [400 kHz, 400GHz] but not the optical range Iopt. = [3.75× 1014, 7.5× 1014] Hz.

Hypothesis H1 corresponds to the presence of the target, so the emitted photon S can be potentially
reflected by the object surface to the QI radar. We obtain the equation:

ρ̂H1 = pηρ̂AS + (1− pη)ρ̂A ⊗ ρ̂′S (9)

where ρ̂AS = ρ̂Ψ
±

AS from Equation (1a). In this equation, we take into consideration that we cannot
distinguish the thermal photons of the polarization noise described in Equation (9), when the object is
present but not detected. Then, we only keep one term for this situation. In Equation (9), we consider
both the reflection probability η and thermal noise p. Consequently, hypothesis H1 looks like a Werner
state with a mixture of a maximally entangled state ρ̂AS and a totally mixed separable state ρ̂A⊗ ρ̂′S [34].
This last state also represents the natural evolution of a quantum state in a perturbative medium like
the atmosphere.

Considering both hypotheses H0 and H1, our binary decision strategy takes the form:

Λ̂ = ρ̂H1 − ρ̂H0 = pηρ̂AS + (1− pη)ρ̂A ⊗ ρ̂′S − pρ̂A ⊗ ρ̂′S + (1− p)ρ̂M (10)

Table 1. Conditional probabilities calculated using a projection measurement P̂HV on Λ̂.

Conditional probability Situation of detection

P (+|H1) = pηa2 Detected object in hypothesis H1

P (−|H1) = (1− pη)a4 Not-detected object in hypothesis H1

P (+|H0) = pa2b2 Detected object in hypothesis H0

P (−|H0) = (1− p)a2b2 Not-detected object in hypothesis H0
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Using Λ̂, we make projection measurements {P̂HH , P̂HV , P̂V H , P̂V V } in the eigenbasis of the two
photons {|HH⟩, |HV ⟩, |V H⟩, |V V ⟩} to compute conditional probabilities represented in Table 1 giving
probabilities of detection. In this particular situation, we only made projection measurements on the
eigenstate |HV ⟩. Using Table 1, we obtain the signal-to-noise ratios (SNR) of Equation (11).

SNRH1 =
P (+|H1)

P (−|H1)
=

pη

(1− pη)a2
(11a)

SNRH0 =
P (+|H0)

P (−|H0)
=

p

1− p
(11b)

SNR+ =
P (+|H1)

P (+|H0)
=

η

b2
(11c)

As in article [1], the number of entangled states represented by a, b improves the SNR. In
Equation (11), only the SNRH1 and SNRH0 depend on the parameter p. However, the SNR+ does
not clearly represent our decision strategy because the detection hypotheses do not discriminate the
uncorrelated thermal photons of photon S from photon A kept inside the QI radar. It is a limitation
of our detection model because SNR+ should depend on the thermal noise. Next, we only use
formulas (11a) associated with a success probability and (11b) associated with a false alarm. They
are represented in Figure 6. In this figure, we see that both SNRH1 and SNRH0 increase as the emission
frequency increases. It respectively means that the success probability of detection grows as well as the
false alarm probability. Nevertheless, we also obtain low SNRH0 and SNRH1 on the microwave range
since SNRH0 , SNRH1 < 1/2, ∀f ∈ [1, 1000]GHz. SNRH0 only depends on p since the object is absent
whereas the SNRH1 depends on both p and η. It is the reflection probability η that permits to get a
better success probability than the false alarm. In Figure 6, we can obtain SNRH1 > SNRH0 only if
η ⩾ 0.52. Hence, the reflection probability η plays an important role in this simple model of QI radar
in polarization states.

Figure 6. SNRH1 and SNRH0 with a = b = 1/
√
2 as function of the emitted frequency on a range

f ∈ [1, 1000]GHz with 5 reflectivity coefficients from 0.01 to 0.9 for a temperature of T = 300K.

According to these results, a QI radar in polarization states should take into consideration two major
issues. On one hand, the microwave frequency regime around 10GHz is suitable for the propagation
distance of quantum correlations in the order of several kilometers. This is not the case anymore when
we approach an emission frequency of 100GHz or more. On the other hand, the great thermal noise
around 10GHz with more than 624 thermal qubits in average strongly limits the SNR for a reliable
detection. However, SNRH1 gets better when we increase the emission frequency whereas we lose range
for quantum correlations. Taking these results into account, it seems clear that an optimization for the
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emission frequency should be properly studied for a QI radar in the microwave regime in the atmosphere.
We insist on the fact that our model is not realistic, but it highlights issues in microwave quantum radar
theory.

Another issue is the independence of the channel influence γ from the detection strategy using p
and η. Furthermore, in Equation (9) we did not clearly separate contributions of parameters η and
p. Consequently, we attempt a new approach of the QI radar depicted in the next section where we
combine the channel influence γ, reflection probability η, and thermal noise with p into a single model.

4.2. Alternative Detection Strategy

The objective of this second approach of the binary decision strategy is to discriminate the influence of
the three parameters (γ, η, p) in the quantum radar scheme. We combine these three parameters into a
single model of decision to make a link between the availability of quantum correlations and the binary
decision strategy of the QI radar. For that, we modify the detection hypotheses H0 and H1 including the
propagation model effects, and we compute the quantum discord on the detection hypotheses. Here,
quantum discord does not represent the quantum correlations rate. It represents the distribution of
quantum correlations in the decision strategy as function of (γ, η, p).

We rewrite the detection hypotheses H0 and H1. In hypothesis H0, there is only the thermal noise,
so the QI radar can only see one thermal qubit or nothing. Therefore, hypothesis H0 of Equation (8)
remains the same. Next, we modify hypothesis H1. To study the influence of the parameters, we use
a sum η + p instead of the product ηp of Equation (9). We lose the physical description to separately
study the influence of η, p, and γ. We obtain Equation (12):

ρ̂H1 ≡ ρ̂
(1)
AS = (η + p)ρ̂AS,out + (1− η − p)ρ̂A ⊗ ρ̂S (12)

On the left side, we have the quantum state ρ̂AS,out modified by the depolarizing channel of Equation (2).
On the right side, we find the state product ρ̂A ⊗ ρ̂S where no object is detected. Notice that the
modification of hypothesis H1 involves the constraint η + p < 1 which limits the frequency range
depending on the choice of η. Finally, in Equation (12) we obtain on the left an entangled quantum
state that evolves thanks to the quantum channel action. On the right, we have a product state ρ̂A⊗ ρ̂S
corresponding to a not-entangled state of qubits A and S. It corresponds to the detection of photon S
after it has been reflected by the target, or to a qubit S from the thermal noise.

Using these hypothesesH0 andH1, we write an operator Λ̂ representing the binary decision strategy:

Λ̂ = ρ̂H1 − ρ̂H0 = (η + p)ρ̂AS,out + (1− η − p)ρ̂A ⊗ ρ̂S − pρ̂A ⊗ ρ̂′S − (1− p)ρ̂M (13)

Equation (13) is written as function of (η, p) and γ with the operator ρ̂AS,out. In Λ̂, only the part

ρ̂H1 ≡ ρ̂
(1)
AS including the density operator ρ̂AS,out has some quantum information useful from the QI

radar point of view. Consequently, to compute the distribution of quantum correlations we must
calculate this distribution using the quantum discord over hypothesis H1. So, we take Equation (12)

for calculations where we only use ρ̂
(1)
AS represented below:

ρ̂
(1)
AS =


ρ11 0 0 0

0 ρ22 ρ23 0

0 ρ32 ρ33 0

0 0 0 ρ44

 (14)

where the coefficients {ρii}i=1...4 verifying the condition Tr{ρ̂(1)AS} = ρ11+ ρ22+ ρ33+ ρ44 = 1 are defined
by:

ρ11 = (η + p)
2

3
γa2 + (1− η − p)a2b2 (15a)

ρ22 = (η + p)(3− 2γ)
a2

3
+ (1− η − p)a4 (15b)

ρ23 = ρ32 = ±(η + p)(3− 4γ)
ab

3
(15c)
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ρ33 = (η + p)(3− 2γ)
b2

3
+ (1− η − p)b4 (15d)

ρ44 = (η + p)
2

3
γb2 + (1− η − p)a2b2 (15e)

To compute the quantum discord δ(ρ̂
(1)
AS) interpreted as a distribution of quantum correlations over

hypothesis H1, we first calculate the Von Neumann entropies (16a)–(16c).

S(ρ̂(1)A ) = (ρ11 + ρ22) log2

(
1

ρ11 + ρ22

)
+ (ρ33 + ρ44) log2

(
1

ρ33 + ρ44

)
(16a)

S(ρ̂(1)S ) = (ρ11 + ρ33) log2

(
1

ρ11 + ρ33

)
+ (ρ22 + ρ44) log2

(
1

ρ22 + ρ44

)
(16b)

S(ρ̂(1)A |ρ̂(1)S ){M̂(i)
S } = ρ11 log2

(
ρ11 + ρ33

ρ11

)
+ ρ33 log2

(
ρ11 + ρ33

ρ33

)
+ρ22 log2

(
ρ22 + ρ44

ρ22

)
+ ρ44 log2

(
ρ22 + ρ44

ρ44

)
(16c)

where we observe that S(ρ̂(1)A ) does not explicitly depend on γ unlike S(ρ̂(1)S ) since the quantum channel
only acts directly on the system S. We do not write here the calculus of the joint Von Neumann entropy

S(ρ̂(1)AS) which is quite long.

Using all these calculations, we obtain δ(ρ̂
(1)
AS). As an example, in Figure 7(a) we represent

the distribution of quantum correlations as function of γ for three different emission frequencies
f ∈ {10, 50, 100}GHz of the QI radar. We observe more quantum correlations for γ = 0 than γ = 3/4
since we are initially in the maximally entangled state ρ̂AS before the emission of photon S. Furthermore,
we see that the greater the emission frequency is, the greater the quantum correlations for γ = 0 is.
However, we have the same entangled quantum state at γ = 0 for each tested frequency. The slight
difference is due to the probability p in Equation (12) which is weaker for f = 100GHz than for
f = 10GHz. So, this increase is due to the contribution of η compared to p. It shows that the
contribution of the parameter η of the target is important compared to the probability p. However, the

difference between the values of δ(ρ̂
(1)
AS) calculated for γ = {0, 3/4} is around 0.02 bits which is relatively

weak. According to Figure 7(a), we cannot conclude that calculations of the distribution of quantum

(a) (b)

Figure 7. (a) Distribution of quantum correlations on hypothesis H1 as function of the channel
γ ∈ [0, 3/4] for 3 different frequencies f ∈ {10, 50, 100}GHz, for η = 0.1 and a = b = 1/

√
2. (b)

SNRH1(|HV ⟩) and SNR+(|HV ⟩) as function of γ ∈ [0, 3/4], for f ∈ {10, 50}GHz and η = 0.1 and

a = b = 1/
√
2.
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correlations with δ(ρ̂
(1)
AS) can bring some useful information about the decision strategy in the QI radar

as function of γ.

Additionally, if we compute δ(ρ̂
(1)
AS) for two propagation parameters γ = {1/2, 3/4} as function of

η/p for f = [5, 20]GHz using the same reflection coefficient η = 0.1, we obtain the same flat profile
with roughly the same values. There is not any evolution of the distribution of quantum correlations as
function of η/p. Consequently, this distribution as function of η/p cannot give any information about
a potential optimization between η and p to use in this decision strategy of the QI radar.

Nevertheless, we must use the quantum discord δ(ρ̂
(1)
AS) of hypothesis H1 with the SNR calculated

with the binary decision strategy of Equation (13).
Using Equation (13), we make projection measurements on the basis {|HH⟩, |HV ⟩, |V H⟩, |V V ⟩}

to obtain the SNR for hypotheses H0 and H1. The conditional probabilities are written in Table 2.

Table 2. Conditional probabilities calculated using a projection measurement on Λ̂.

Conditional

probability
|HH⟩ |HV ⟩ |V H⟩ |V V ⟩

P (+|H1) (η + p)2/3γa2 (η + p)(3− 2γ)a2/3 (η + p)(3− 2γ)b2/3 (η + p)2/3γb2

P (−|H1) (1− η − p)a2b2 (1− η − p)a4 (1− η − p)b4 (1− η − p)a2b2

P (+|H0) pa2b2 pa4 pb4 pa2b2

P (−|H0) (1− p)a2b2 (1− p)a4 (1− p)b4 (1− p)a2b2

For hypothesis H0, we obtain the same SNRH0 of Section 4.1 that is SNRH0 = p/(1 − p). For
hypothesis H1, we find the SNRH1 written in Equation (17):

SNRH1 (|HH⟩) =
(η + p) 2γ

(1− η − p) 3b2
(17a)

SNRH1 (|HV ⟩) =
(η + p) (3− 2γ)

(1− η − p) 3a2
(17b)

SNRH1 (|V H⟩) =
(η + p) (3− 2γ)

(1− η − p) 3b2
(17c)

SNRH1 (|V V ⟩) =
(η + p) 2γ

(1− η − p) 3a2
(17d)

Then, we have also calculated the SNR+ in Equation (18):

SNR+ (|HH⟩) = (η + p) 2γ

3pb2
(18a)

SNR+ (|HV ⟩) = (η + p) (3− 2γ)

3pa2
(18b)

SNR+ (|V H⟩) = (η + p) (3− 2γ)

3pb2
(18c)

SNR+ (|V V ⟩) = (η + p) 2γ

3pa2
(18d)

All SNRH1 and SNR+ are functions of (η, p, γ). In this binary decision strategy, we consider an initial
quantum state ρ̂AS = |Ψ+⟩⟨Ψ+|AS for the QI radar. We do not consider the SNR(|HH⟩) and SNR(|V V ⟩)
because |HH⟩ and |V V ⟩ are not involved in the initial quantum state. Consequently, we do not take
into account of Equations (17a), (17d), (18a), and (18d) because these SNRs increase since the evolution
toward a maximally mixed state produces an overlap on |HH⟩ and |V V ⟩. We set a = b = 1/

√
2 as

follows.
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Taking the SNRH1 of Equation (17b), we look for a weak propagation γ ≪ 1, we obtain
SNRH1 ≈ 2(η + p)/(1 − η − p). To have an SNR greater than one, the contribution of the object
with η must be greater than the noise with p. If we have η ≪ p, then we would get SNRH1 ≈ 2p/(1−p)
corresponding to the SNRH0 . Hence, we would roughly have the same probability of success and false
alarm which is not suitable for a radar application. On the contrary, for a long propagation γ → 1, we
obtain SNRH1 ≈ 2(η+ p)/[3(1− η− p)]. There is a competition between contributions of parameters η
and p in SNRH1 . Moreover, we see that the quantum channel weakens the SNRH1 with the factor 1/3.
However, we have mentioned earlier that the quantum channel does not permit to correctly follow the
evolution of information with the binary decision strategy since we are limited to the range γ ∈ [0, 3/4]
in the quantum channel. This issue on the propagation model limits the validity of the SNRH1 for a
long propagation.

Next, we look for the SNR+ in Equation (18b). For a low propagation γ ≪ 1, we obtain
SNR+ ≈ 2(η + p)/p. We observe the enhancement in sensitivity thanks to the entanglement with
factor 2. The SNR+ depends on the competition between η and p for the SNRH1 , and if η ≪ p,
only the entanglement gives an enhancement to the SNR+. For a long propagation γ → 1, we obtain
SNR+ ≈ 2(η + p)/3p. We have again the competition between η and p. If we have η ≪ p, we have
an SNR+ depending on the entanglement with factor 2 and the quantum channel with factor 1/3. The
SNR+,γ→1 ≈ 2/3 < 1. We do not have an SNR equal to zero. The decision model needs improvements;
however, it shows that the quantum channel plays a role in the decision strategy of the QI radar.

With both Equations (17b) and (18b), we obtain Figure 7(b) where we test two emission frequencies
10GHz and 50GHz. We note that the SNRH1 is very low, close to zero for both emission frequencies
whereas the SNR+ takes values higher than one for both emission frequencies. However, in this figure,
we do not distinguish the contributions of parameters η and p, making a confusion on the SNR meaning.
However, Figure 7(b) highlights the role of the quantum channel in the decision strategy.

Looking at Figures 7(a) and 7(b) does not permit to make a clear link between the distribution of
quantum correlations and the SNR calculated in Equations (17) and (18). If we have a slight decrease
for the distribution of quantum correlations in Figure 7(a) and for the SNR+ in Figure 7(b), we cannot
conclude that the link is currently interesting to explore in this model.

5. CONCLUSION

In this work, we modeled the propagation of a photon in atmosphere while developing two approaches
for the binary decision strategy of a QI radar using entanglement between qubits in polarization. We
also made an estimation about the survival distance of entanglement and quantum correlations in the
atmosphere. This estimation gives a survival distance of entanglement in the same order of magnitude
of another article on this subject. Our model allows to give a trend about the survival distance for the
entanglement and the discord as function of the emission frequency in the microwave frequency range.

For the two binary decision strategies tested, we attempted to make a link between the decision
strategy and the propagation phase using a quantum channel. The first approach consists in making
a decision strategy in parallel of the propagation phase modeling. It highlights a need to optimize the
emission frequency to keep the quantum correlations as long as possible or to favour the signal-to-noise
ratio. The second approach consists in exploring the distribution of quantum correlations in a new
decision strategy separating the parameters of the quantum channel, object reflection, and channel
influence. The last approach does not properly work since we cannot use it to better understand the
link between quantum correlations and decision. However, it highlights that the quantum channel plays
a role in the decision strategy with the SNRH1 and SNR+.

This paper gives an estimation about the entanglement and quantum correlations survival distances
in the atmosphere. It also tries to link the decision strategy of the QI radar to the entanglement
evolution. There are several possibilities to study the QI radar further.

First, we should work with more entangled photons taking into account more quantum states.
The continuous variable formalism is suitable for this task, but it requires to use the quantum
information theory in continuous variable [32]. Second, the used propagation model relies on a
quantum channel using a classical attenuation model to estimate quantum correlation survival distances.
This quantum channel provides a limited description of the propagation phase since we consider a
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mean of all interactions between the emitted photon and atmospheric molecules. The study of these
interactions is not in the scope of this paper. Thus, to improve the propagation model we should use
a phenomenological model taking into account the influence of atmospheric molecules H2O and O2 as
in the classical attenuation model. However, this new propagation model would be a quantum model
considering all possible photon-molecule interactions which is a difficult task. We should also take into
account other molecules like N2. Such a phenomenological model is difficult to build and incorporate
in the decision strategy of a QI radar. Third, the influence of the object surface must also be carefully
studied. We must study the influence of non-homogeneous surfaces, the influence of volumes, and its
effects on quantum information evolution.

At this stage of research, we cannot know whether a QI radar is feasible. There is still a lot of work
to do on the quantum illumination protocol to develop further applications in remote sensing.
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APPENDIX A. CALCULATION OF THE VON NEUMANN ENTROPIES TO
EXPRESS THE QUANTUM DISCORD

We express the quantum discord δ(ρ̂AS, out) calculating the Von Neumann entropies of Equation (6b).
For subsystems A and S, we have:

S(ρ̂A, out) = a2 log

(
1

a2

)
+ b2 log

(
1

b2

)
(A1a)

S(ρ̂S, out) =
(3− 2γ)a2 + 2γb2

3
log

(
3

(3− 2γ)a2 + 2γb2

)
+
2γa2 + (3− 2γ)b2

3
log

(
3

2γa2 + (3− 2γ)b2

)
(A1b)

S(ρ̂S, out) explicitly depends on the quantum channel (2) since only photon S passes through the
atmosphere. Next, we compute the conditional entropy with projection measurements on qubit S:

S(ρ̂A, out|ρ̂S, out){M̂(i)
S } =

2γa2

3
log

(
(3− 2γ)b2 + 2γa2

2γa2

)
+

(3− 2γ)b2

3
log

(
2γa2 + (3− 2γ)b2

(3− 2γ)b2

)
+
(3− 2γ)a2

3
log

(
(3− 2γ)a2+2γb2

(3− 2γ)a2

)
+
2γb2

3
log

(
(3− 2γ)a2+2γb2

2γb2

)
(A2)

Equation (A2) corresponds to the uncertainty on subsystem A when projection measurements are done
on subsystem S.

Next, we compute the entropy of the system AS. The joint entropy S(ρ̂AS,out) =
−Tr{ρ̂AS,out log(ρ̂AS,out)} is calculated by diagonalization of the matrix ρ̂AS, out to obtain an equation
of the form log(ρ̂AS, out) = P log(D)P−1. So, we first get the eigenvalues of the density matrix ρ̂AS,out:

λ1 =
2

3
γa2; λ2 =

2

3
γb2; λ3 =

3− 2γ + 3
√
∆

6
; λ4 =

3− 2γ − 3
√
∆

6
(A3)

where we have ∆ = 1
9 [(1 − 4a2b2)(3 − 2γ)2 + 4a2b2(3 − 4γ)2] which equals zero only for γ = 3/4 for

γ ∈ [0, 1]. Now, depending on the Bell state |Ψ±⟩AS or |Φ±⟩AS, equations take different configurations,
but we finally obtain the same result. We present the calculations for the states |Ψ±⟩AS. The operator
ρ̂AS,out log ρ̂AS,out is written in Equation (A4).

ρ̂AS,out log ρ̂AS,out =


H1 0 0 0

0 H2 ±H3 0

0 ±H4 H5 0

0 0 0 H6

 (A4)
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where the coefficients Hi=1...6 are defined in Equation (A5).

H1 =
2

3
γa2L1 (A5a)

H2 = (3− 2γ)
a2

3
L2 + (3− 4γ)

ab

3
L4 (A5b)

H3 = (3− 2γ)
a2

3
L3 + (3− 4γ)

ab

3
L5 (A5c)

H4 = (3− 4γ)
ab

3
L2 + (3− 2γ)

b2

3
L4 (A5d)

H5 = (3− 4γ)
ab

3
L3 + (3− 2γ)

b2

3
L5 (A5e)

H6 =
2

3
γb2L6 (A5f)

and the coefficients Li=1...6 are:

L1 = log(λ1) (A6a)

L2 =
1

c2d1 − c1d2
(c2d1 log(λ4)− c1d2 log(λ3)) (A6b)

L3 =
c1d1

c2d1 − c1d2
(log(λ4)− log(λ3)) (A6c)

L4 =
c2d2

c2d1 − c1d2
(log(λ3)− log(λ4)) (A6d)

L5 =
1

c2d1 − c1d2
(c2d1 log(λ3)− c1d2 log(λ4)) (A6e)

L6 = log(λ2) (A6f)

The coefficients Li are defined as function of ci=1,2, di=1,2:

c1 =
2(3− 4γ)ab√

4(3− 4γ)2a2b2 + [(3− 2γ)(2a2 − 1)− 3
√
∆]2

(A7a)

c2 =
(3− 2γ)(2a2 − 1)− 3

√
∆√

4(3− 4γ)2a2b2 + [(3− 2γ)(2a2 − 1)− 3
√
∆]2

(A7b)

d1 =
2(3− 4γ)ab√

4(3− 4γ)2a2b2 + [(3− 2γ)(2a2 − 1) + 3
√
∆]2

(A7c)

d2 =
(3− 2γ)(2a2 − 1) + 3

√
∆√

4(3− 4γ)2a2b2 + [(3− 2γ)(2a2 − 1) + 3
√
∆]2

(A7d)

Finally, we obtain the joint Von Neumann entropy S(ρ̂Ψ±
AS,out) = −H1 − H2 − H5 − H6. Using

Equations (A1)–(A7), we obtain the quantum discord δ(ρ̂AS,out) represented in Figure 2.
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