Vol. 102
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-08-16
Clutter and Ambiguity Reduction Using 3-Dimensional Side-Looking Synthetic Aperture Radar
By
Progress In Electromagnetics Research B, Vol. 102, 115-130, 2023
Abstract
Advancement in radar component technology has led to a reduction in the size, weight, and power consumption of radar systems. Experimental radar systems can now be integrated onto smaller, maneuverable platforms, such as small unmanned aerial vehicles (sUAVs). Integration onto rotor-based sUAVs enables data collection over novel synthetic apertures which can be optimized for different scenarios. The design, simulation, and experimentation of a light-weight, ultra-wideband synthetic aperture radar (SAR) is presented here that will be used for the detection of obscured surface targets. The approach outlined herein uses 3-dimensional (3-D) imagery to vertically resolve clutter from the target. A vertical-grid aperture is presented which yields vertical resolution. Point spread functions are derived for both linear and vertical-grid apertures. The analytical expressions are verified using simulations. Finally, experimental data is used to form 3-D imagery and demonstrate the importance of vertical resolution in the discrimination between scatterers above the ground, as well as clutter mitigation.
Citation
Colin D. Kelly, Traian V. Dogaru, Kyle A. Gallagher, Calvin D. Le, Brian R. Phelan, and Ram M. Narayanan, "Clutter and Ambiguity Reduction Using 3-Dimensional Side-Looking Synthetic Aperture Radar," Progress In Electromagnetics Research B, Vol. 102, 115-130, 2023.
doi:10.2528/PIERB23050903
References

1. Dogaru, T. V., B. R. Phelan, and C. D. Kelly, "Analysis of buried target and clutter signature in ground penetrating radar imaging," Proc. SPIE 12108, Radar Sensor Technology XXVI, Vol. 12108, 1210804, Orlando, FL, USA, SPIE, Bellingham, WA, April 3-7, 2022.

2. Bradley, M. R., T. R. Witten, R. McCummins, M. Crowe, S. Stewart, and M. Duncan, "Mine detection with a multichannel stepped-frequency ground-penetrating radar," Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, Vol. 3710, 953-960, Orlando, FL, USA, SPIE, Bellingham, WA, April 5-9, 1999.
doi:10.1117/12.357115

3. Bradley, M. R., T. R. Witten, R. McCummins, M. Duncan, M. Crowe, and S. Stewart, "Mine detection with a ground-penetrating synthetic aperture radar," Proc. SPIE 4038, Detection and Remediation Technologies for Mines and Minelike Targets V, Vol. 4038, 1001-1007, Orlando, FL, USA, SPIE, Bellingham, WA, April 24-28, 2000.
doi:10.1117/12.396185

4. Bradley, M. R., T. R. Witten, R. McCummins, and M. Duncan, "Mine detection with ground penetrating synthetic aperture radar," Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, Vol. 4742, 248-258, Orlando, FL, USA, SPIE, Bellingham, WA, April 1-5, 2002.
doi:10.1117/12.479095

5. Chambers, D. H., D. W. Paglieroni, J. E. Mast, and N. R. Beer, Real-time vehicle-mounted multistatic ground penetrating radar imaging system for buried object detection, Report LLNL-TR-615452, Lawrence Livermore National Laboratories, USA, January 2013.

6. Paglieroni, D. W., D. H. Chambers, J. E. Mast, S. W. Bond, and N. R. Beer, "Imaging modes for ground penetrating radar and their relation to detection performance," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 3, 1132-1144, 2015.
doi:10.1109/JSTARS.2014.2357718

7. Kositsky, J. and P. Milanfar, "Forward-looking high-resolution GPR system," Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, Vol. 3710, 1052-1062, Orlando, FL, USA, SPIE, Bellingham, WA, April 5-9, 1999.

8. Kositsky, J. and C. A. Amazeen, "Results from a forward-looking GPR mine detection system," Proc. SPIE 4394, Detection and Remediation Technologies for Mines and Minelike Targets VI, Vol. 4394, 700-711, Orlando.

9. Bradley, M. R., T. R. Witten, M. Duncan, and R. McCummins, "Mine detection with a forward-looking ground-penetrating synthetic aperture radar," Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Vol. 5089, 334-347, Orlando, FL, USA, SPIE, Bellingham, WA, April 21-25, 2003.

10. Bradley, M. R., T. R. Witten, M. Duncan, and R. McCummins, "Anti-tank and side-attack mine detection with a forward-looking GPR," Proc. SPIE 5415, Detection and Remediation Technologies for Mines and Minelike Targets IX, Vol. 5415, 421-432, Orlando, FL, USA, SPIE, Bellingham, WA, April 12-16, 2004.

11. Ressler, M., L. Nguyen, F. Koenig, D. Wong, and G. Smith, "The Army Research Laboratory (ARL) synchronous impulse reconstruction (SIRE) forward-looking radar," Proc. SPIE 6561, Unmanned Systems Technology IX, Vol. 6561, Article ID 656105, Orlando, FL, USA, SPIE, Bellingham, WA, April 9-13, 2007.

12. Phelan, B. R., K. I. Ranney, K. A. Gallagher, J. T. Clark, K. D. Sherbondy, and R. M. Narayanan, "Design of ultrawideband stepped-frequency radar for imaging of obscured targets," IEEE Sensors Journal, Vol. 17, No. 14, 4435-4446, 2017.
doi:10.1109/JSEN.2017.2707340

13. Ulander, L. M. H., et al., "Analysis of CARABAS VHF SAR data from BALTASAR-96," IGARSS'97, 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing --- A Scientific Vision for Sustainable Development, Vol. 2, 797-799, Singapore, IEEE, Piscataway, NJ, August 3-8, 1997.

14. Gasson, J., D. Hughes, M. Poulter, and G. Crisp, "Development of an ultra wide-band SAR for minefield detection," IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS'99 (Cat. No.99CH36293), Vol. 5, 2474-2476, Hamburg, Germany, IEEE, Piscataway, NJ, June 28-July 2, 1999.

15. Aubry, W. M., et al., "Airborne sensor concept to image shallow-buried targets," Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), 233-236, Long Beach, CA, USA, IEEE, Piscataway, NJ, April 25, 2002.

16. Le Goff, M., R. Guillerey, F. Gallais, J. Andrieu, B. Beillard, and B. Jecko, "Ultra wide band synthetic aperture radar for the detection of mined areas," RADAR 2002, 526-530, Edinburgh, UK, IEEE, Piscataway, NJ, October 15-17, 2002.

17. Schleijpen, H. M. A., "Landmine detection technology research programme at TNO," Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, 2003, 138-143, Delft, Netherlands, IEEE, Piscataway, NJ, May 14-16, 2003.

18. Moussally, G., K. Breiter, and J. Rolig, "Wide-area landmine survey and detection system," Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004, GPR 2004, 693-696, Delft, Netherlands, IEEE, Piscataway, NJ, June 21-24, 2004.

19. Fasano, G., A. Renga, A. R. Vetrella, G. Ludeno, I. Catapano, and F. Soldovieri, "Proof of concept of micro-UAV-based radar imaging," 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 1316-1323, Miami, FL, USA, IEEE, Piscataway, NJ, June 13-16, 2017.

20. Garcia Fernandez, M., et al., "Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle," IEEE Access, Vol. 6, 45100-45112, 2018.
doi:10.1109/ACCESS.2018.2863572

21. Garcia Fernandez, M., Y. A. Lopez, and F. L. Andrees, "Airborne multi-channel ground penetrating radar for improvised explosive devices and landmine detection," IEEE Access, Vol. 8, 165927-165943, 2020.
doi:10.1109/ACCESS.2020.3022624

22. Schartel, M., R. Burr, W. Mayer, N. Docci, and C. Waldschmidt, "UAV-based ground penetrating synthetic aperture radar," 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, Munich, Germany, IEEE, Piscataway, NJ, April 15-17, 2018.

23. Dill, S., E. Schreiber, M. Engel, A. Heinzel, and M. Peichl, "A drone carried multichannel synthetic aperture radar for advanced buried object detection," 2019 IEEE Radar Conference (RadarConf.), 1-6, Boston, MA, USA, IEEE, Piscataway, NJ, April 22-26, 2019.

24. Richards, M. A., Principles of Modern Radar, Vol 1: Basic Principles, SciTech Publishing, Inc., Raleigh, NC, USA, 2010.
doi:10.1049/SBRA021E

25. Dogaru, T. V., Performance analysis of side-looking ground penetrating radar imaging, Report ARL-TR-9388, Army Research Laboratory, USA, January 2022.

26. Dogaru, T., AFDTD user's manual, Report ARL-TR-5145, Army Research Laboratory, USA, March 2010.