Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-01
Design of a Beam-Steering Metamaterial Inspired LPDA Array for 5G Applications
By
Progress In Electromagnetics Research M, Vol. 117, 151-161, 2023
Abstract
This article presents the design and implementation of a beam-steering antenna array using a 4x4 Butler matrix feed network (BMN) for 5G applications. The proposed antenna array can achieve a gain of 14 dBi and a steering range of (+16º, -47º, +46.5º, -15.7º) to cover angular range extending from 45º to 135º. To achieve that, a simple, 4x4 Butler matrix etched on a single-layer microstrip structure is designed, optimized, and fabricated. The proposed design incorporates phase shifters, 3-dB couplers, and cross-over couplers. The proposed matrix is employed as a feeding network for 4-element wideband LPDA antenna array. The fabrication results of the feeding matrix and antenna array show very good agreement with the simulated results.
Citation
Rania Eid A. Shehata, Moataza Hindy, Hamdi Elmekati, and Ayman Mohamed Fekry Elboushi, "Design of a Beam-Steering Metamaterial Inspired LPDA Array for 5G Applications," Progress In Electromagnetics Research M, Vol. 117, 151-161, 2023.
doi:10.2528/PIERM23042406
References

1. Eid, R., A. Elboushi, and M. Hindy, "Wideband monopole antenna with multiple stub resonators for 5G applications," 2021 38th National Radio Science Conference (NRSC), Vol. 1, 80-87, IEEE, 2021.
doi:10.1109/NRSC52299.2021.9509812

2. Ikram, M., K. S. Sultan, A. M. Abbosh, and N. Nguyen-Trong, "Sub-6 GHz and mm-wave 5G vehicle-to-everything (5G-V2X) MIMO antenna array," IEEE Access, Vol. 10, 49688-49695, 2022.
doi:10.1109/ACCESS.2022.3172931

3. Sultan, K., M. Ikram, and N. Nguyen-Trong, "A multiband multibeam antenna for sub-6 GHz and mm-wave 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 1278-1282, 2022.
doi:10.1109/LAWP.2022.3164627

4. Shehata, R. E. A., A. Elboushi, M. Hindy, and H. Elmekati, "Metamaterial inspired LPDA MIMO array for upper band 5G applications," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 32, No. 8, e23212, 2022.
doi:10.1002/mmce.23212

5. Shehata, R. E. A., M. Hindy, H. Elmekati, and A. Elboushi, "Circularly polarized directive hybrid patch/horn antenna for upper band 5G applications," Microwave and Optical Technology Letters, 2022, DOI:10.1002/mop.33489.

6. Alam, M. M., "Microstrip antenna array with four port butler matrix for switched beam base station application," 2009 12th International Conference on Computers and Information Technology, 531-536, IEEE, 2009.

7. Hong, W., K.-H. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6250-6261, 2017.
doi:10.1109/TAP.2017.2740963

8. Hong, W., Z. H. Jiang, C. Yu, et al. "Multibeam antenna technologies for 5G wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6231-6249, 2017.
doi:10.1109/TAP.2017.2712819

9. Nolen, J., "Synthesis of multiple beam networks for arbitrary illuminations,", Ph.D. dissertation, 1965.

10. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, 1963.
doi:10.1109/TAP.1963.1138114

11. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 225-232, 2002.
doi:10.1109/8.997999

12. Rahimian, A., "Microwave beamforming networks employing Rotman lenses and cascaded Butler matrices for automotive communications beam scanning electronically steered arrays," 2011 Microwaves, Radar and Remote Sensing Symposium, 351-354, IEEE, 2011.
doi:10.1109/MRRS.2011.6053671

13. Kim, S., S. Yoon, Y. Lee, and H. Shin, "A miniaturized Butler matrix based switched beamforming antenna system in a two-layer hybrid stackup substrate for 5G applications," Electronics, Vol. 8, No. 11, 1232, 2019.
doi:10.3390/electronics8111232

14. Ashraf, N., A.-R. Sebak, and A. A. Kishk, "PMC packaged single-substrate 4 × 4 Butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 248-261, 2020.
doi:10.1109/TMTT.2020.3022092

15. Lee, S., Y. Lee, and H. Shin, "A 28-GHz switched-beam antenna with integrated Butler matrix and switch for 5G applications," Sensors, Vol. 21, No. 15, 5128, 2021.
doi:10.3390/s21155128

16. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410, 2007.
doi:10.1103/PhysRevB.75.155410

17. Chen, X., T. M. Grzegorczyk, B.-I.Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

18. Imani, A. and M. S. Bayati, "A novel design of compact broadband 4 × 4 Butler matrix-based beamforming antenna array for C-band applications," AEU --- International Journal of Electronics and Communications, Vol. 138, 153901, 2021.
doi:10.1016/j.aeue.2021.153901

19. Abdulbari, A. A., S. K. A. Rahim, et al. "A review of hybrid couplers: State-of-the-art, applications, design issues and challenges," International Journal of Numerical Modelling Electronic Networks Devices and Fields, Vol. 34, No. 5, e2919, 2021.
doi:10.1002/jnm.2919

20. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, No. 1, 7-23, 1992.
doi:10.1109/5.119564