Vol. 118
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-19
Moving Metallic Slab Illuminated by a Plane Wave: Theory and Numerical Analysis Using the Finite Difference Time Domain Method
By
Progress In Electromagnetics Research M, Vol. 118, 25-35, 2023
Abstract
The response of a uniformly moving metallic slab to an electromagnetic plane wave, at normal incidence, is studied. The analysis is based on the application of boundary conditions to Maxwell's equations as a function of time. The Doppler effect and amplitude of the obtained reflected wave agree with the literature. Moreover, a transferred wave which has not been analyzed in the literature is demonstrated. The frequency shift and the amplitude of this wave are studied analytically with the same technique used for the reflected wave. The transfer of electromagnetic wave through the metallic slab is made possible by the presence of a static magnetic field inside the moving metallic slab, if the motion of the slab is opposite to the direction of propagation of the incident wave. The amplitude of the transferred wave is approximately 2v/c times the amplitude of the incidence wave, with v being the speed of motion and c the speed of light in vacuum. This amplitude is thus very small for non-relativistic speeds. The analytical results are validated by full-wave simulations based on the Finite Difference Time Domain method, where both reflected and transferred waves are demonstrated. Furthermore, numerical electric field and magnetic field distributions are presented at different time instants.
Citation
Mohammad Marvasti, and Halim Boutayeb, "Moving Metallic Slab Illuminated by a Plane Wave: Theory and Numerical Analysis Using the Finite Difference Time Domain Method," Progress In Electromagnetics Research M, Vol. 118, 25-35, 2023.
doi:10.2528/PIERM23041109
References

1. Yeh, C., "Reflection and transmission of electromagnetic waves by a moving dielectric medium," Journal of Applied Physics, Vol. 36, No. 11, 3513-3517, 1965.
doi:10.1063/1.1703029

2. Shiozawa, T. and K. Hazama, "General solution to the problem of reflection and transmission by a moving dielectric medium," Radio Science, Vol. 3, No. 6, 569-575, 1968.
doi:10.1002/rds196836569

3. Lee, S. and Y. Lo, "Reflection and transmission of electromagnetic waves by a moving uniaxially anisotropic medium," Journal of Applied Physics, Vol. 38, No. 2, 870-875, 1967.
doi:10.1063/1.1709427

4. Tai, C., "The dyadic Green's function for a moving isotropic medium," Tech. Rep., 1964.

5. Tanaka, K. and K. Hazama, "Reflection and transmission of electromagnetic waves by a moving inhomogeneous medium," Radio Science, Vol. 7, No. 10, 973-978, 1972.
doi:10.1029/RS007i010p00973

6. Yeh, C., "Brewster angle for a dielectric medium moving at relativistic speed," Journal of Applied Physics, Vol. 38, No. 13, 5194-5200, 1967.
doi:10.1063/1.1709301

7. Daly, P. and H. Gruenberg, "Energy relations for plane waves reflected from moving media," Journal of Applied Physics, Vol. 38, No. 11, 4486-4489, 1967.
doi:10.1063/1.1709154

8. Pyati, V., "Reflection and refraction of electromagnetic waves by a moving dielectric medium," Journal of Applied Physics, Vol. 38, No. 2, 652-655, 1967.
doi:10.1063/1.1709390

9. Valenzuela, G., "Scattering of electromagnetic waves from a slightly rough surface moving with uniform velocity," Radio Science, Vol. 3, No. 12, 1154-1157, 1968.
doi:10.1002/rds19683121154

10. Kong, J.-A. and D. K. Cheng, "Wave behavior at an interface of a semi-infinite moving anisotropic medium," Journal of Applied Physics, Vol. 39, No. 5, 2282-2286, 1968.
doi:10.1063/1.1656544

11. Costen, R. and D. Adamson, "Three-dimensional derivation of the electrodynamic jump conditions and momentum-energy laws at a moving boundary," Proc. IEEE, Vol. 53, No. 9, 1181-1196, 1965.
doi:10.1109/PROC.1965.4162

12. Bolotovskii, B. M. and S. N. Stolyarov, "Reflection of light from a moving mirror and related problems," Sov. Phys. Usp., Vol. 32, 813, 1989.
doi:10.1070/PU1989v032n09ABEH002759

13. Ostrovskii, L. A., "Some moving boundaries paradoxes in electrodynamics," Radio-Physics Research Institute, Vol. 116, 315-326, 1975.

14. Pogorzelski, R. J., "Electromagnetic scattering from an expanding dielectric slab," Journal of Mathematical Physics, Vol. 11, No. 5, 1685-1689, 1970.
doi:10.1063/1.1665311

15. Chawla, B. and H. Unz, "Reflection and transmission of electromagnetic waves normally incident on a plasma slab moving uniformly along a magnetostatic field," IEEE Trans. Antennas Propag., Vol. 17, No. 6, 771-777, 1969.
doi:10.1109/TAP.1969.1139548

16. Censor, D., "Scattering of electromagnetic waves by a cylinder moving along its axis," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 3, 154-158, 1969.
doi:10.1109/TMTT.1969.1126914

17. Mueller, U., A. Beyer, and W. Hoefer, "Moving boundaries in 2-D and 3-D TLM simulations realized by recursive formulas," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2267-2271, 1992.
doi:10.1109/22.179889

18. Ives, H. E., "The Doppler effect from moving mirrors," JOSA, Vol. 30, No. 6, 255-257, 1940.
doi:10.1364/JOSA.30.000255

19. Gjurchinovski, A., "Reflection of light from a uniformly moving mirror," American Journal of Physics, Vol. 72, No. 10, 1316-1324, 2004.
doi:10.1119/1.1778390

20. Gjurchinovski, A., "The Doppler effect from a uniformly moving mirror," European Journal of Physics, Vol. 26, No. 4, 643, 2005.
doi:10.1088/0143-0807/26/4/009

21. He, Q. and Y. Huang, "Reflection of plane electromagnetic waves from the surface of a perfect conductor moving in an arbitrary direction," Chin. Sci. Bull., Vol. 45, 1564-1569, 2000.
doi:10.1007/BF02886213

22. McWilliams, J., "Electromagnetics: A discussion of fundamentals," Thought: Fordham University Quarterly, Vol. 14, No. 4, 677-680, 1939.

23. Ashworth, D. and P. Davies, "The Doppler effect in a reflecting system," Proc. IEEE, Vol. 64, No. 2, 280-281, 1976.
doi:10.1109/PROC.1976.10098

24. Abdelazeez, M., L. Peach, and S. Borkar, "Scattering of electromagnetic waves from moving surfaces," IEEE Trans. Antennas Propag., Vol. 27, No. 5, 679-684, 1979.
doi:10.1109/TAP.1979.1142162

25. Restrick, R. C., "Electromagnetic scattering by a moving conducting sphere," Radio Science, Vol. 3, No. 12, 1144-1154, 1968.
doi:10.1002/rds19683121144

26. Marvasti, M. and H. Boutayeb, "Analysis of moving dielectric half-space with oblique plane wave incidence using the Finite Difference Time Domain method," Progress In Electromagnetics Research M, Vol. 115, 119-128, 2023.
doi:10.2528/PIERM23012204

27. Smith, G. S., An Introduction to Classical Electromagnetic Radiation, Cambridge Univ. Press, 1997.

28. Parseval, M.-A., "Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaires du second ordre, à coefficients constants, Mém. prés. par divers savants," Acad. des Sciences, Vol. 1, No. 1, 638, Paris, 1806.