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Moving Metallic Slab Illuminated by a Plane Wave: Theory
and Numerical Analysis Using the Finite Difference

Time Domain Method

Mohammad Marvasti and Halim Boutayeb*

Abstract—The response of a uniformly moving metallic slab to an electromagnetic plane wave, at
normal incidence, is studied. The analysis is based on the application of boundary conditions to
Maxwell’s equations as a function of time. The Doppler effect and amplitude of the obtained reflected
wave agree with the literature. Moreover, a transferred wave which has not been analyzed in the
literature is demonstrated. The frequency shift and the amplitude of this wave are studied analytically
with the same technique used for the reflected wave. The transfer of electromagnetic wave through
the metallic slab is made possible by the presence of a static magnetic field inside the moving metallic
slab, if the motion of the slab is opposite to the direction of propagation of the incident wave. The
amplitude of the transferred wave is approximately 2v/c times the amplitude of the incidence wave,
with v being the speed of motion and c the speed of light in vacuum. This amplitude is thus very small
for non-relativistic speeds. The analytical results are validated by full-wave simulations based on the
Finite Difference Time Domain method, where both reflected and transferred waves are demonstrated.
Furthermore, numerical electric field and magnetic field distributions are presented at different time
instants.

1. INTRODUCTION

The problem of reflection and transmission of electromagnetic waves by moving mediums is of important
interest and has been extensively investigated in the literature. In [1–5], problems of two moving
mediums parallel with the interface are studied thoroughly. In [6–9], the reflection and refraction of
normal or obliquely incident electromagnetic wave from a moving dielectric half-space are investigated.
In [10], modified forms of Snell’s law for refraction from a moving medium illuminated by a plane
wave at arbitrary direction are obtained. A three-dimensional solution of the electromagnetic jump
conditions at a moving boundary is derived in [11]. In [12], closed-form expressions for the frequencies
and wave vectors of reflection and refraction by moving interfaces are presented. A discussion about
several questions which arise in obtaining and utilizing boundary conditions along moving interfaces is
presented in [13]. In [14], the reflected wave from an expanding dielectric slab is investigated. Power
reflection and transmission coefficients are calculated for a moving plasma slab, illuminated by a plane
wave source at normal incidence in [15]. The scattered waves by a cylinder moving uniformly and
illuminated by a plane wave are discussed in [16]. A technique for boundary movement in Transmission
Line Matrix (TLM) networks is described in [17]. Several authors have studied the Doppler effect for a
wave reflected from a moving metallic surface. In [18], it is shown that Lorentz’s transformations can
be derived from the analysis of the reflection of light by a moving mirror. Formulas of the Doppler shift
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for different directions of motion of the mirror and for different incidence angles of the plane wave are
presented in [19–23]. In [24, 25], electromagnetic wave scattering from different moving metallic objects
is considered.

In this work, the response of a uniformly moving metallic slab to an electromagnetic plane wave,
at normal incidence, is studied analytically and numerically. The proposed theoretical analysis is based
on energy conservation, the study of a moving plane wave source, and the application of boundary
conditions. The Doppler effect and amplitude of the obtained reflected wave agree with the literature.
Furthermore, it is shown that part of the wave is transferred on the other side of the slab due to the
presence of a static magnetic field inside the moving metallic slab, if the motion of the slab is opposite
to the direction of propagation of the incident wave. The proposed analysis is validated by a full-wave
numerical investigation based on the Finite Difference Time Domain (FDTD) method with moving
structures. The implementation of motion in FDTD is based on the techniques described in [26], which
are valid for non-relativistic speeds. In [26], FDTD is used to study the response of a moving inclined
dielectric half-space to an electromagnetic plane wave. The results presented in this paper are also valid
for non-relativistic speeds. In [26], results for high speeds are presented only for comparing numerical
and analytical results or for increasing the Doppler effect in order to obtain a better visualization in
the field distribution. In practical applications, only problems with non-relativistic speeds should be
considered with the proposed direct FDTD approach [26].

The remainder of the paper is structured as follows. Section 2 shows the study of the Doppler
frequency shift and amplitude of the electric and magnetic fields in time and frequency domains for a
moving plane wave source. Section 3 presents a theoretical analysis of the amplitudes and frequencies
of the transferred and reflected electric and magnetic fields in the frequency and time domains for a
moving metallic slab. The theoretical analysis is validated by full-wave simulations in Section 4. Finally,
concluding remarks are given in Section 5.

2. MOVING PLANE WAVE SOURCE

The analysis presented in this section will be used in the next section. A plane wave source is moving in
−x⃗ direction, away from the observer, with the speed v, and the observer is at rest as shown in Fig. 1.
We used, as the excitation source, a windowed Sine signal Ezi(t) = AEzi(t)Π(f0N t) sin(2πf0t), presenting

a modulated sinusoid Êzi(f) = AÊzi(f)
N
f0

Sinc(f−f0
Nf0

) spectrum, where f0 is the frequency of excitation,

and N is the number of periods of Sine function considered for simulation. AEzi(t) and AÊzi(f)
are

the amplitudes of incident electric field component in z-axis, in time domain and frequency domain,
respectively. This excitation provides a sharp frequency spectrum and makes frequency identification
accurate and simple. The observer measures E′

z and Ez, the electric field component in z-axis for moving
source and for source at rest, respectively. We call f ′ the frequency of observed waves when the source

Figure 1. Plane wave source moving away from observation point (FDTD). Absorbing Boundary
Conditions (ABCs), Perfect Magnetic Conductors (PMCs), and Perfect Electric Conductors (PECs)
are used for the boundaries. PECs are used in the boundaries that are not shown in the figure.
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is moving, and f is the frequency when the source is at rest. A′
Êz(f)

and A′
Ez(t)

are the amplitudes of

observed electric field component in z-axis, in the frequency and time domains, respectively, when the
source is moving. AÊz(f)

and AEz(t) are the same amplitudes when the source is at rest. A′
Ĥy(f)

and

A′
Hy(t)

are the amplitudes of magnetic field component in y-axis, in the frequency and time domains,

respectively, when the source is moving. AĤy(f)
and AHy(t) are the same amplitudes when the source is

at rest.
Figure 2 shows the simulated FDTD signal received by the observer, in time domain, for different

values of v/c, with c being the speed of light in vacuum. Fig. 3 shows spectrum of observed signal. Fig. 4
shows that the simulated frequencies and amplitudes in frequency domain agree with the non-relativistic
Doppler effect formula for moving source:

f ′

f
=

A′
Ez(t)

AEz(t)
=

A′
Hy(t)

AHy(t)
=

1

1 + v
c

(1)

From Fig. 3 we have:
A′

Êz(f)

AÊz(f)

=
A′

Ĥy(f)

AĤy(f)

= 1 (2)

Figure 2. Simulated (FDTD) signal in time
domain for plane wave source moving with speed
v in normal direction away from observer, for
different values of v

c .

Figure 3. Simulated (FDTD) signal in frequency
domain for plane wave source moving with speed
v in normal direction away from observer, for
different values of v

c .

Figure 4. Simulated (FDTD) and predicted Doppler frequency shift and amplitude of the electric field
in time domain for plane wave source moving with speed v away from observer, versus v

c .
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3. THEORETICAL ANALYSIS OF A MOVING METALLIC SLAB

A metallic slab, which is modeled as a Perfect Electric Conductor (PEC), is moving in −x⃗ direction
with the speed v and is illuminated by a plane wave as shown in Fig. 5. The plane wave source is
made of a plane of z-polarized current sources. The plane wave is propagating with the speed c in +x⃗
direction.

Figure 5. Metallic slab moving toward a plane
wave source (FDTD setup).

Figure 6. Illumination of a moving metallic slab
by a plane wave source. The metallic slab moves
toward the plane wave source in −x⃗ direction.
The plane wave propagates in +x⃗ direction.

3.1. Transferred Wave

Inside the moving metallic slab, all electric field components are equal to zero. In the vicinity of the
surface of the metallic slab, the tangential electric field is zero, but the tangential magnetic field is not
zero. Because of this, a magnetic field can exist inside the slab when the slab is in motion. In Fig. 6,
Eztot1 and Hytot1 are total field components in air. Eztot2 and Hytot2 are total field components inside
the metallic slab. For a perfect conductor, in the absence of surface currents, Eztot1 = Eztot2 = 0 and
Hytot1 = Hytot2 = 2Hyi keep true in the vicinity of the surface of the metallic slab, as it moves. Hyi is the
incident magnetic field. Thus we have A′′

Hyt(t)
/AHyi(t) = 2, where A′′

Hyt(t)
and AHyi(t) are the amplitudes

of magnetic field inside the metallic slab and incident magnetic field in y⃗ direction, respectively.
We call d the distance traveled by the incident signal from a certain point to reach the edge of the

slab (Fig. 6). This distance is traveled within time τ :

τ =
d

c+ v
(3)

d′′t is the width reached by the magnetic field inside the slab, due to the motion of the slab, within the
same time. One can show that:

d′′t = vτ (4)

Therefore, the wavelength of the magnetic field, which is “frozen” (not moving) inside the slab
(λslabmagn), can be expressed as:

λslabmagn

λ
=

d′′t
d

(5)

where λ is the wavelength of the incident wave. By substituting (3) and (4) into (5), we obtain:

λslabmagn

λ
=

v/c

1 + v/c
(6)

The frozen magnetic field remains static as the metallic slab moves toward −x⃗. When the opposite
edge of the slab reaches the static magnetic fields, a transferred wave can start to propagate as illustrated
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in Fig. 7 (Eztot3 is not null). The opposite edge of the metallic slab acts like a moving plane wave source.
By using Huygens’ principle [27], the moving slab can be replaced by an equivalent current density
Js
zequiv(t) at the location of the slab’s second edge. The amplitude of the equivalent current density

Js
zequiv(t), named A′

Js
zequiv(t)

, must be chosen such that it generates Eztot3 and Hytot3 on the right side

of the current source in the equivalent problem. This ensures that the boundary condition is satisfied
for the moving slab.

Figure 7. Transferred waves from a moving
metallic slab illuminated by a plane wave source.
The metallic slab moves toward the plane wave
source in −x⃗ direction.

Figure 8. Equivalent problem to analyze the
wave on the right-hand side: a plane of current
source with amplitude A′

Js
zequiv(t)

is moving in −x⃗

direction.

The problem is thus replaced by an equivalent plane wave source that moves with the speed v
toward −x⃗ direction, as illustrated in Fig. 8. In order to obtain the frequency of this equivalent source,
one can imagine the static magnetic field inside the slab, as an excitation signal with the wavelength of
λslabmagn that is approaching the metallic slab’s opposite edge with the speed v. Thus the frequency of
excitation signal of equivalent source (fJs

zequiv
) can be expressed by: v

λslabmagn
. One can show that the

relative frequency is given by:
fJs

zequiv

f
=

v

c

λ

λslabmagn
= 1 + v/c (7)

where f is the frequency of the incident wave. Using (7), we have:

Js
zequiv(t) =

A′
Js
zequiv(t)

AHyi(t)
Hyi((1 + v/c)(t− t0)) (8)

According to Section 2, the observer at rest measures the following relative frequency:

f ′
t

fJs
zequiv

=
1

1 + v/c
(9)

From this, one can obtain:
f ′
t

f
=

f ′
t

fJs
zequiv

fJs
zequiv

f
=

1 + v/c

1 + v/c
= 1 (10)

Therefore, the transferred wave has the same frequency as the incident wave. To derive the
amplitude of the transferred wave, the ratio of the energy of the frozen magnetic field over the energy
of the incident magnetic field in time domain is first expressed as:

W(Hytot2(t))

W(Hyi(t))
=

µ0

2

∫ +∞
−∞ |Hytot2(t)|2 dt

µ0

2

∫ +∞
−∞ |Hyi(t)|2 dt

=

∫ +∞
−∞

∣∣∣2×Hyi

((
1+v/c
v/c

)
t
)∣∣∣2 dt∫ +∞

−∞ |Hyi(t)|2 dt
= 4× v/c

1 + v/c
(11)
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Now we compute the energy ratio in frequency domain:

W(Ĥytot2(f))

W(Ĥyi(f))
=

µ0

2

∫ +∞
−∞ |Ĥytot2(f)|2 df

µ0

2

∫ +∞
−∞ |Ĥyi(f)|2 df

=

∫ +∞
−∞

∣∣∣∣A′′
Ĥyt(f)

AĤyi(f)
× Ĥyi

((
v/c

1+v/c

)
f
)∣∣∣∣2 df∫ +∞

−∞ |Ĥyi(f)|2 df
=

|A′′
Ĥyt(f)

|2

|AĤy(f)
|2
×1 + v/c

v/c

(12)
where A′′

Ĥyt(f)
is the amplitude of the frozen magnetic field in y⃗ direction inside the slab, and AĤyi(f)

is

the amplitude of the incident magnetic field, in frequency domain. By using the Parseval’s theorem [28]:∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|x̂(f)|2 df → W(Ĥytot2(f))

W(Ĥyi(f))
=

W(Hytot2(t))

W(Hyi(t))
(13)

Substituting (11) and (12) into (13), one can obtain:

|A′′
Ĥyt(f)

|2

|AĤyi(f)
|2

× 1 + v/c

v/c
= 4× v/c

1 + v/c
→

A′′
Ĥyt(f)

AĤyi(f)

=
2v/c

1 + v/c
= 1− 1− v/c

1 + v/c
(14)

By using (2), the amplitude of the transferred magnetic field in frequency domain (A′
Ĥyt(f)

) can be

derived:
A′

Ĥyt(f)

AĤyi(f)

=
A′′

Ĥyt(f)

AĤyi(f)

= 1− 1− v/c

1 + v/c
=

A′
Êzt(f)

AÊzi(f)

(15)

A′
Êzt(f)

and A′
Êzi(f)

are the amplitudes of z-polarized transferred and incident electric fields, in frequency

domain, respectively. The amplitude of the transferred wave is thus approximately 2v/c times of the
amplitude of the incidence wave, at first order approximation in terms of v/c. This amplitude is thus
very small for non-relativistic speeds. Based on (10), due to the absence of a frequency shift for the
transferred wave, the relative amplitude in time domain is equal to the relative amplitude in frequency
domain:

A′
Hyt(t)

AHyi(t)
=

A′
Ĥyt(f)

AĤyi(f)

=
2v/c

1 + v/c
(16)

Also based on (1), the amplitude of the equivalent source can be written:

A′
Js
zequiv(t)

AHyi(t)
=

A′
Js
zequiv(t)

A′
Hyt(t)

A′
Hyt(t)

AHyi(t)
= (1 + v/c)

2v/c

1 + v/c
= 2v/c (17)

3.2. Reflected Wave

The wave that is reflected by the first edge of the metallic slab, as shown in Fig. 6, is now considered.
At time instant τ , the distance between the wavefront and the edge of the slab, d′r, can be written:

d′r = cτ − vτ = d
c− v

c+ v
(18)

where τ is given by (3). The Doppler frequency conversion is thus given by:

f ′
r

f
=

λ

λReflected
=

d

d′r
=

1 + v/c

1− v/c
(19)

where f ′
r is the frequency of reflected wave when the metallic slab is moving. The ratio of the energy of

reflected wave over the energy of the incident field, in time domain, can be obtained with:

W(Hyr(t))

W(Hyi(t))
=

µ0

2

∫ +∞
−∞ |Hyr(t)|2 dt

µ0

2

∫ +∞
−∞ |Hyi(t)|2 dt

=

∫ +∞
−∞

∣∣∣Hyi

((
1+v/c
1−v/c

)
t
)∣∣∣2 dt∫ +∞

−∞ |Hyi(t)|2 dt
=

1− v/c

1 + v/c
(20)
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where Hyr(t) is the reflected wave in time domain. In the vicinity of the surface of the metallic slab:

Hyr = Hytot1 −Hyi = Hyi (21)

keeps true as it moves. Thus, the amplitude of the reflected wave is equal to the amplitude of the
incident wave (AHyr(t) = AHyi(t)). The energy ratio in frequency domain is given by:

W(Ĥyr(f))

W(Ĥyi(f))
=

µ0

2

∫ +∞
−∞ |Ĥyr(f)|2 df

µ0

2

∫ +∞
−∞ |Ĥyi(f)|2 df

=

∫ +∞
−∞

∣∣∣∣A′
Ĥyr(f)

AĤyi(f)
× Ĥyi

((
1−v/c
1+v/c

)
f
)∣∣∣∣2 df∫ +∞

−∞ |Ĥyi(f)|2 df
=

|A′
Ĥyr(f)

|2

|AĤy(f)
|2

× 1 + v/c

1− v/c

(22)
where A′

Ĥyr(f)
is the amplitude of the reflected wave in frequency domain. By using (13), we have:

|A′
Ĥyr(f)

|2

|AĤyi(f)
|2

× 1 + v/c

1− v/c
=

1− v/c

1 + v/c
→

A′
Ĥyr(f)

AĤyi(f)

=
1− v/c

1 + v/c
=

A′
Êzr(f)

AÊzi(f)

(23)

where A′
Êzr(f)

is the amplitude of the reflected electric field in frequency domain. The result obtained

for the reflected wave agrees with the literature and is valid for relativistic speeds. Indeed, the classical
wave theory and special relativity predict the same Doppler effect formula for the reflected wave from
a moving mirror, at normal incidence. It is interesting to note that the following relationship between
the amplitudes of transferred and reflected waves is obtained:

A′
Êzt(f)

AÊzi(f)

= 1−
A′

Êzr(f)

AÊzi(f)

(24)

which can also be written as A′
Êzt(f)

+A′
Êzr(f)

= AÊzi(f)
. One can state that the solutions obtained for

the transferred wave could also be valid for relativistic speeds, because the solutions obtained for the
reflected wave are valid at relativistic speeds.

4. FDTD ANALYSIS OF A MOVING METALLIC SLAB

A series of full-wave simulations were carried out in order to validate the previous study, by using the
Finite Difference Time Domain method. The FDTD setup is described in Fig. 5.

Two observation points are used to compute the reflected and transferred waves. A windowed Sine
excitation is used for a good visualization of the Doppler effect. Fig. 9 shows the simulated amplitude of
the reflected wave in frequency domain for different values of v

c . An analysis of the amplitude at the peak
frequency and of Doppler frequency shift shows that the numerical results agree with the theory. Fig. 10

Figure 9. Simulated amplitude of the reflected
wave in frequency domain for different values of
v
c .

Figure 10. Simulated amplitude of the
transferred wave in frequency domain for different
values of v

c .
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Figure 11. Amplitude of transferred wave versus v
c , for metallic slab moving toward −x⃗ direction.

(a) (b)

(c) (d)

(e)

Figure 12. Simulated electric field distribution for a metallic slab moving toward a plane wave source
with v

c = 0.3, at different time instants. (a) t = 0.3 ns, (b) t = 0.5 ns, (c) t = 0.7 ns, (d) t = 1.1 ns, (e)
t = 1.3 ns.

presents the simulated amplitude of the transferred wave in frequency domain for different values of
v
c . The numerical results confirm that no Doppler frequency shift is obtained for the transferred wave.
Moreover, the amplitude at the peak frequency agrees with the analytical result (15), as shown in
Fig. 11.

Figures 12 and 13 show, at different time instants, the electric field and magnetic field distributions,
respectively. For a good visualization of the Doppler effect, ratio v

c = 0.3 is considered. The edges of the
metallic slab are marked with white color. At t = 0.7 ns, the reflected wave can be clearly seen in both
Fig. 12(c) and Fig. 13(c). Its wavelength is smaller than the incident wave wavelength, as expected. At
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(a) (b)

(c) (d)

(e)

Figure 13. Simulated magnetic field distribution for a metallic slab moving toward a plane wave source
with v

c = 0.3, at different time instants. (a) t = 0.3 ns, (b) t = 0.5 ns, (c) t = 0.7 ns, (d) t = 1.1 ns, (e)
t = 1.3 ns.

the same time instant, one can observe a magnetic field inside the metallic slab but no electric field.
The magnetic field is static, and its wavelength agrees with the previous analysis. At t = 1.3 ns, one can
observe an electromagnetic wave propagating in +x⃗ direction at the right-hand side of the slab. The
frequency of this transferred wave is the same as the frequency of the incident wave. These full-wave
results, which demonstrate the presence of both, the reflected wave studied extensively in the literature
and the transferred wave which is analyzed in this paper for the first time, further validate the proposed
investigation.

The results presented in this paper agree with experimental results reported in the literature for
very fast moving materials. Indeed, in [12], the authors describe the following: “the relative shift of the
frequency was then approximately 20% and this was confirmed experimentally” and “no increase in the
amplitude on reflection was observed”. The authors then explain that the materials become transparent
at very high speeds. This agrees with the analysis presented in this work.

5. CONCLUSION

This paper has presented a new analysis of a uniformly moving metallic slab illuminated by a plane wave,
at normal incidence. In addition to the well-known reflected wave, a transferred wave is demonstrated,
and new analytical formulas are derived for this wave. The transfer of electromagnetic wave through the
metallic slab is made possible by the presence of a static magnetic field inside the moving metallic slab,
if the motion of the slab is opposite to the direction of propagation of the incident wave. The proposed
study is validated by full-wave simulations based on the Finite Difference Time Domain method. We
have verified that the space mesh and time step of the FDTD discretization have no effect on the results.
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Moreover, the same results were obtained by replacing the material of the slab from a perfect conductor
to a material with high conductivity. Further experiments are needed to verify if the obtained results
are not a paradox of Maxwell’s equations for a moving metallic object.

This work shows that Maxwell’s equations predict the reflected and transferred waves for a moving
metallic slab illuminated by a plane wave. There are two main reasons that can explain why the
transferred wave has not been studied in the literature, either theoretically or experimentally. First, the
amplitude of the transferred wave is very small for non-relativistic speeds (its amplitude is approximately
2v/c times of the amplitude of the incidence wave, with v being the speed of motion and c the speed
of light in vacuum). Second, the presence of a transferred wave through a moving metallic slab may
seem surprising at first. However, it is well known that a magnetic field can be present inside a metallic
object.
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