1. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, No. 1., 383-390, 2020.
doi:10.1038/s41566-020-0604-2
2. Jia, Y., C. Qian, Z. Fan, T. Cai, E. Li, and H. Chen, "A knowledge-inherited learning for intelligent metasurface design and assembly," Light: Science $$$$$$$$$&$$$$$$$$$ Applications, Vol. 12, No. 2., 82, 2023.
doi:10.1038/s41377-023-01131-4
3. Zhang, J., C. Qian, J. Chen, B. Wu, and H. Chen, "Uncertainty qualification for metasurface design with amendatory Bayesian network," Laser $$$$$$$$$&$$$$$$$$$ Photonics Reviews, No. 3., 2200807, 2023.
doi:10.1002/lpor.202200807
4. Maass, W., T. Natschl ager, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., Vol. 14, No. 11, 2531-2560, 2002.
doi:10.1162/089976602760407955
5. Jaeger, H. and H. Haas, "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication," Science, Vol. 304, No. 5667, 78-80, 2004.
doi:10.1126/science.1091277
6. Der Sande, G. V., D. Brunner, and M. C. Soriano, "Advances in photonic reservoir computing," Nanophotonics, Vol. 6, No. 3, 561-576, 2017.
doi:10.1515/nanoph-2016-0132
7. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system," Opt. Express, Vol. 27, No. 16, 23293-23306, 2019.
doi:10.1364/OE.27.023293
8. Vandoorne, K., J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, "Parallel reservoir computing using optical amplifiers," IEEE Transactions on Neural Networks, Vol. 22, No. 9, 1469-1481, 2011.
doi:10.1109/TNN.2011.2161771
9. Takano, K., C. Sugano, M. Inubushi, K. Yoshimura, S. Sunada, K. Kanno, and A. Uchida, "Compact reservoir computing with a photonic integrated circuit," Opt. Express, Vol. 26, No. 22, 29424-29439, 2018.
doi:10.1364/OE.26.029424
10. Vatin, J., D. Rontani, and M. Sciamanna, "Enhanced performance of a reservoir computer using polarization dynamics in VCSELs," Opt. Lett., Vol. 43, No. 18, 4497-4500, 2018.
doi:10.1364/OL.43.004497
11. Appeltant, L., M. C. Soriano, G. van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, "Information processing using a single dynamical node as complex system," Nature Commun., Vol. 2, No. 11., 468, 2011.
doi:10.1038/ncomms1476
12. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, No. 12., 1364, 2013.
doi:10.1038/ncomms2368
13. Ortin, S. and L. Pesquera, "Reservoir computing with an ensemble of time-delay reservoirs," Cogn. Comput., Vol. 9, No. 3, 327-336, 2017.
doi:10.1007/s12559-017-9463-7
14. Goldmann, M., F. Koster, K. Ludge, and S. Yanchuk, "Deep time-delay reservoir computing: Dynamics and memory capacity," Chaos, Vol. 30, No. 14., 093124, 2020.
doi:10.1063/5.0017974
15. Stelzer, F., A. Rohm, K. Ludge, and S. Yanchuk, "Performance boost of time-delay reservoir computing by non-resonant clock cycle," Neural Networks, Vol. 124, No. 15., 158-169, 2020.
doi:10.1016/j.neunet.2020.01.010
16. Vatin, J., D. Rontani, and M. Sciamanna, "Experimental reservoir computing using VCSEL polarization dynamics," Opt. Express, Vol. 27, No. 16., 18579-18584, 2019.
doi:10.1364/OE.27.018579
17. Soriano, M. C., S. Ortin, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, and G. van der Sande, "Delay-based reservoir computing: Noise effects in a combined analog and digital implementation," IEEE Trans. Neural Netw. Learn. Syst., Vol. 26, No. 2, 388-393, 2015.
doi:10.1109/TNNLS.2014.2311855
18. Larger, L., M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing," Opt. Express, Vol. 20, No. 3, 3241-3249, 2012.
doi:10.1364/OE.20.003241
19. Hulser, T., F. Koster, K. Ludge, and L. Jaurigue, "Deriving task specific performance from the information processing capacity of a reservoir computer," Nanophotonics, Vol. 12, No. 19., 937-947, 2023.
doi:10.1515/nanoph-2022-0415
20. Chen, Y., L. Yi, J. Ke, Z. Yang, Y. Yang, L. Huang, Q. Zhuge, and W. Hu, "Reservoir computing system with double optoelectronic feedback loops," Opt. Express, Vol. 27, No. 20, 27431-27440, 2019.
doi:10.1364/OE.27.027431
21. Li, Z., S. S. Li, X. Zou, W. Pan, and L. Yan, "Processing-speed enhancement in a delay-laser-based reservoir," Photonics, Vol. 9, No. 21., 240, 2022.
doi:10.3390/photonics9040240
22. Chemboa, Y. K., "Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems," Chaos, Vol. 30, No. 22., 013111, 2020.
doi:10.1063/1.5120788
23. Ashner, M. N., U. Paudel, M. Luengo-Kovac, J. Pilawa, T. Justin Shaw, and G. C. Valley, "Photonic reservoir computer with all-optical reservoir," Proc. SPIE, AI and Optical Data Sciences II, No. 23., 117030L, 2021.
24. Skontranis, M., G. Sarantoglou, A. Bogris, and C. Mesaritakis, "Time-delayed reservoir computing based on a dual-waveband quantum-dot spin polarized vertical cavity surface-emitting laser," Optical Materials Express, Vol. 12, No. 24., 4047-4060, 2022.
doi:10.1364/OME.451585
25. Chen, P., R. Liu, K. Aihara, and L. Chen, "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Commun., Vol. 11, No. 25., 4568, 2020.
doi:10.1038/s41467-020-18381-0
26. Xu, Y., M. Zhang, L. Zhang, P. Lu, S. Mihailov, and X. Bao, "Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback," Opt. Lett., Vol. 42, No. 26., 4107-4110, 2017.
doi:10.1364/OL.42.004107
27. Zhang, L., B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, "640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser," Sci. Rep., Vol. 7, No. 27., 45900, 2017.
doi:10.1038/srep45900
28. Estebanez, I., J. Schwind, I. Fischer, and A. Argyris, "Accelerating photonic computing by bandwidth enhancement of a time-delay reservoir," Nanophotonics, Vol. 9, No. 13, 4163-4171, 2020.
doi:10.1515/nanoph-2020-0184
29. Wang, T., X. Wang, Z. Deng, J. Sun, G. P. Puccioni, G. Wang, and G. L. Lippi, "Dynamics of a micro-VCSEL operated in the threshold region under low-level optical feedback," IEEE J. Sel. Top. Quantum Electron., Vol. 25, No. 29., 1700308, 2019.
30. Wang, T. and G. L. Lippi, "Polarization-resolved cartography of light emission of a vertical-cavity surface-emitting laser with high space and frequency resolution," Appl. Phys. Lett., Vol. 107, No. 30., 181103, 2015.
doi:10.1063/1.4935040
31. Torre, M. S., C. Masoller, P. Mandel, and K. A. Shore, "Enhanced sensitivity to current modulation near dynamic instability in semiconductor lasers with optical feedback and optical injection," J. Opt. Soc. Am. B, Vol. 21, No. 31., 302-306, 2004.
doi:10.1364/JOSAB.21.000302
32. Nazhan, S., Z. Ghassemlooy, K. Busawon, and A. Gholami, "Investigation of polarization switching of VCSEL subject to intensity modulated and optical feedback," Optics $$$$$$$$$&$$$$$$$$$ Laser Technology, Vol. 75, No. 32., 240-245, 2015.
doi:10.1016/j.optlastec.2015.07.008
33. Deng, H., G. L. Lippi, J. Mork, J. Wiersig, and S. Reitzenstein, "Physics and applications of high-β micro- and nanolasers," Adv. Optical Mater., Vol. 9, No. 33., 2100415, 2021.
doi:10.1002/adom.202100415
34. Javanshir, A., T. T. Nguyen, M. A. Parvez Mahmud, and A. Z. Kouzani, "Advancements in algorithms and neuromorphic hardware for spiking neural networks," Neural Comput., Vol. 34, No. 6, 1289-1328, 2022.
doi:10.1162/neco_a_01499
35. Wang, T., G. P. Puccioni, and G. L. Lippi, "Dynamical buildup of lasing in mesoscale devices," Scientific Reports, Vol. 5, No. 35., 15858, 2015.
doi:10.1038/srep15858
36. Wang, T., C. Jiang, J. Zou, J. Yang, K. Xu, C. Jin, G. Wang, G. P. Puccioni, and G. L. Lippi, "Nanolasers with feedback as low-coherence illumination sources for speckle-free imaging: A numerical analysis of the superthermal emission regime," Nanomaterials, Vol. 11, No. 36., 3325, 2021.
doi:10.3390/nano11123325
37. Brunner, D., L. Larger, and M. C. Soriano, "Nonlinear photonic dynamical systems for unconventional computing," Nonlinear Theory and Its Applications, IEICE, Vol. 13, No. 37., 26-35, 2022.
doi:10.1587/nolta.13.26
38. Puccioni, G. P. and G. L. Lippi, "Stochastic Simulator for modeling the transition to lasing," Opt. Express, Vol. 23, No. 3, 2369-2374, 2015.
doi:10.1364/OE.23.002369
39. Lippi, G. L., T. Wang, and G. P. Puccioni, "`Phase transitions' in small systems: Why standard threshold definitions fail for nanolasers," Chaos, Solitons and Fractals, Vol. 157, No. 39., 111850, 2022.
doi:10.1016/j.chaos.2022.111850
40. Rice, P. R. and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy," Phys. Rev. A, Vol. 50, No. 40., 4318, 1994.
doi:10.1103/PhysRevA.50.4318
41. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation," IEEE J. Sel. Top. Quantum Electron., Vol. 26, No. 41., 1500707, 2020.
42. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, No. 42., 1364, 2013.
doi:10.1038/ncomms2368
43. Yue, D., Z. Wu, Y. Hou, B. Cui, Y. Jin, M. Dai, and G. Xia, "Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection," Opt. Exp., Vol. 27, No. 14, 19931-19939, 2019.
doi:10.1364/OE.27.019931
44. Yue, D., Y. Hou, Z. Wu, C. Hu, Z. Xiao, and G. Xia, "Experimental investigation of an optical reservoir computing system based on two parallel time-delay reservoirs," IEEE Photonics Journal, Vol. 13, No. 3, 8500111, 2021.
doi:10.1109/JPHOT.2021.3075055
45. Koster, F., S. Yanchuk, and K. Ludge, "Insight into delay based reservoir computing via eigenvalue analysis," J. Phys. Photonics, Vol. 3, No. 45., 024011, 2021.
doi:10.1088/2515-7647/abf237
46. Hulser, T., F. Koster, L. Jaurigue, and K. Ludge, "Role of delay-times in delay-based photonic reservoir computing," Opt. Mater. Express, Vol. 12, No. 46., 1214-1231, 2022.
doi:10.1364/OME.451016
47. Sugano, C., K. Kanno, and A. Uchida, "Reservoir computing using multiple lasers with feedback on a photonic integrated circuit," IEEE J. Sel. Topics Quantum Electron., Vol. 26, No. 1, 1-9, 2020.
doi:10.1109/JSTQE.2019.2929179
48. Taylor, J., "Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements," University Science Books, No. 48., 349 (cit. on p. 84), 1997.