Vol. 178
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-07-23
Reservoir Computing and Task Performing through Using High-β Lasers with Delayed Optical Feedback
By
Progress In Electromagnetics Research, Vol. 178, 1-12, 2023
Abstract
Nonlinear photonic sources including semiconductor lasers have been recently utilized as ideal computation elements for information processing. They supply energy-efficient way and rich dynamics for classification and recognition tasks. In this work, we propose and numerically study the dynamics of complex photonic systems including high-β laser element with delayed feedback and functional current modulation, and employ nonlinear laser dynamics of near-threshold region for the application in reservoir computing. The results indicate a perfect (100%) recognition accuracy for the pattern recognition task and an accuracy about 98% for the Mackey-Glass chaotic sequences prediction. Therefore, the system shows an improvement of performance with low-power consumption. In particular, the error rate is an order of magnitude smaller than previous works. Furthermore, by changing the DC pump, we are able to modify the number of spontaneous emission photons of the system, which then allows us to explore how the laser noise impacts the performance of the reservoir computing system. Through manipulating these variables, we show a deeper understanding on the proposed system, which is helpful for the practical applications of reservoir computing.
Citation
Tao Wang, Can Jiang, Qing Fang, Xingxing Guo, Yahui Zhang, Chaoyuan Jin, and Shuiying Xiang, "Reservoir Computing and Task Performing through Using High-β Lasers with Delayed Optical Feedback," Progress In Electromagnetics Research, Vol. 178, 1-12, 2023.
doi:10.2528/PIER23040401
References

1. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, No. 1., 383-390, 2020.
doi:10.1038/s41566-020-0604-2

2. Jia, Y., C. Qian, Z. Fan, T. Cai, E. Li, and H. Chen, "A knowledge-inherited learning for intelligent metasurface design and assembly," Light: Science $$$$$$$$$&$$$$$$$$$ Applications, Vol. 12, No. 2., 82, 2023.
doi:10.1038/s41377-023-01131-4

3. Zhang, J., C. Qian, J. Chen, B. Wu, and H. Chen, "Uncertainty qualification for metasurface design with amendatory Bayesian network," Laser $$$$$$$$$&$$$$$$$$$ Photonics Reviews, No. 3., 2200807, 2023.
doi:10.1002/lpor.202200807

4. Maass, W., T. Natschl ager, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., Vol. 14, No. 11, 2531-2560, 2002.
doi:10.1162/089976602760407955

5. Jaeger, H. and H. Haas, "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication," Science, Vol. 304, No. 5667, 78-80, 2004.
doi:10.1126/science.1091277

6. Der Sande, G. V., D. Brunner, and M. C. Soriano, "Advances in photonic reservoir computing," Nanophotonics, Vol. 6, No. 3, 561-576, 2017.
doi:10.1515/nanoph-2016-0132

7. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system," Opt. Express, Vol. 27, No. 16, 23293-23306, 2019.
doi:10.1364/OE.27.023293

8. Vandoorne, K., J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, "Parallel reservoir computing using optical amplifiers," IEEE Transactions on Neural Networks, Vol. 22, No. 9, 1469-1481, 2011.
doi:10.1109/TNN.2011.2161771

9. Takano, K., C. Sugano, M. Inubushi, K. Yoshimura, S. Sunada, K. Kanno, and A. Uchida, "Compact reservoir computing with a photonic integrated circuit," Opt. Express, Vol. 26, No. 22, 29424-29439, 2018.
doi:10.1364/OE.26.029424

10. Vatin, J., D. Rontani, and M. Sciamanna, "Enhanced performance of a reservoir computer using polarization dynamics in VCSELs," Opt. Lett., Vol. 43, No. 18, 4497-4500, 2018.
doi:10.1364/OL.43.004497

11. Appeltant, L., M. C. Soriano, G. van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, "Information processing using a single dynamical node as complex system," Nature Commun., Vol. 2, No. 11., 468, 2011.
doi:10.1038/ncomms1476

12. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, No. 12., 1364, 2013.
doi:10.1038/ncomms2368

13. Ortin, S. and L. Pesquera, "Reservoir computing with an ensemble of time-delay reservoirs," Cogn. Comput., Vol. 9, No. 3, 327-336, 2017.
doi:10.1007/s12559-017-9463-7

14. Goldmann, M., F. Koster, K. Ludge, and S. Yanchuk, "Deep time-delay reservoir computing: Dynamics and memory capacity," Chaos, Vol. 30, No. 14., 093124, 2020.
doi:10.1063/5.0017974

15. Stelzer, F., A. Rohm, K. Ludge, and S. Yanchuk, "Performance boost of time-delay reservoir computing by non-resonant clock cycle," Neural Networks, Vol. 124, No. 15., 158-169, 2020.
doi:10.1016/j.neunet.2020.01.010

16. Vatin, J., D. Rontani, and M. Sciamanna, "Experimental reservoir computing using VCSEL polarization dynamics," Opt. Express, Vol. 27, No. 16., 18579-18584, 2019.
doi:10.1364/OE.27.018579

17. Soriano, M. C., S. Ortin, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, and G. van der Sande, "Delay-based reservoir computing: Noise effects in a combined analog and digital implementation," IEEE Trans. Neural Netw. Learn. Syst., Vol. 26, No. 2, 388-393, 2015.
doi:10.1109/TNNLS.2014.2311855

18. Larger, L., M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing," Opt. Express, Vol. 20, No. 3, 3241-3249, 2012.
doi:10.1364/OE.20.003241

19. Hulser, T., F. Koster, K. Ludge, and L. Jaurigue, "Deriving task specific performance from the information processing capacity of a reservoir computer," Nanophotonics, Vol. 12, No. 19., 937-947, 2023.
doi:10.1515/nanoph-2022-0415

20. Chen, Y., L. Yi, J. Ke, Z. Yang, Y. Yang, L. Huang, Q. Zhuge, and W. Hu, "Reservoir computing system with double optoelectronic feedback loops," Opt. Express, Vol. 27, No. 20, 27431-27440, 2019.
doi:10.1364/OE.27.027431

21. Li, Z., S. S. Li, X. Zou, W. Pan, and L. Yan, "Processing-speed enhancement in a delay-laser-based reservoir," Photonics, Vol. 9, No. 21., 240, 2022.
doi:10.3390/photonics9040240

22. Chemboa, Y. K., "Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems," Chaos, Vol. 30, No. 22., 013111, 2020.
doi:10.1063/1.5120788

23. Ashner, M. N., U. Paudel, M. Luengo-Kovac, J. Pilawa, T. Justin Shaw, and G. C. Valley, "Photonic reservoir computer with all-optical reservoir," Proc. SPIE, AI and Optical Data Sciences II, No. 23., 117030L, 2021.

24. Skontranis, M., G. Sarantoglou, A. Bogris, and C. Mesaritakis, "Time-delayed reservoir computing based on a dual-waveband quantum-dot spin polarized vertical cavity surface-emitting laser," Optical Materials Express, Vol. 12, No. 24., 4047-4060, 2022.
doi:10.1364/OME.451585

25. Chen, P., R. Liu, K. Aihara, and L. Chen, "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Commun., Vol. 11, No. 25., 4568, 2020.
doi:10.1038/s41467-020-18381-0

26. Xu, Y., M. Zhang, L. Zhang, P. Lu, S. Mihailov, and X. Bao, "Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback," Opt. Lett., Vol. 42, No. 26., 4107-4110, 2017.
doi:10.1364/OL.42.004107

27. Zhang, L., B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, "640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser," Sci. Rep., Vol. 7, No. 27., 45900, 2017.
doi:10.1038/srep45900

28. Estebanez, I., J. Schwind, I. Fischer, and A. Argyris, "Accelerating photonic computing by bandwidth enhancement of a time-delay reservoir," Nanophotonics, Vol. 9, No. 13, 4163-4171, 2020.
doi:10.1515/nanoph-2020-0184

29. Wang, T., X. Wang, Z. Deng, J. Sun, G. P. Puccioni, G. Wang, and G. L. Lippi, "Dynamics of a micro-VCSEL operated in the threshold region under low-level optical feedback," IEEE J. Sel. Top. Quantum Electron., Vol. 25, No. 29., 1700308, 2019.

30. Wang, T. and G. L. Lippi, "Polarization-resolved cartography of light emission of a vertical-cavity surface-emitting laser with high space and frequency resolution," Appl. Phys. Lett., Vol. 107, No. 30., 181103, 2015.
doi:10.1063/1.4935040

31. Torre, M. S., C. Masoller, P. Mandel, and K. A. Shore, "Enhanced sensitivity to current modulation near dynamic instability in semiconductor lasers with optical feedback and optical injection," J. Opt. Soc. Am. B, Vol. 21, No. 31., 302-306, 2004.
doi:10.1364/JOSAB.21.000302

32. Nazhan, S., Z. Ghassemlooy, K. Busawon, and A. Gholami, "Investigation of polarization switching of VCSEL subject to intensity modulated and optical feedback," Optics $$$$$$$$$&$$$$$$$$$ Laser Technology, Vol. 75, No. 32., 240-245, 2015.
doi:10.1016/j.optlastec.2015.07.008

33. Deng, H., G. L. Lippi, J. Mork, J. Wiersig, and S. Reitzenstein, "Physics and applications of high-β micro- and nanolasers," Adv. Optical Mater., Vol. 9, No. 33., 2100415, 2021.
doi:10.1002/adom.202100415

34. Javanshir, A., T. T. Nguyen, M. A. Parvez Mahmud, and A. Z. Kouzani, "Advancements in algorithms and neuromorphic hardware for spiking neural networks," Neural Comput., Vol. 34, No. 6, 1289-1328, 2022.
doi:10.1162/neco_a_01499

35. Wang, T., G. P. Puccioni, and G. L. Lippi, "Dynamical buildup of lasing in mesoscale devices," Scientific Reports, Vol. 5, No. 35., 15858, 2015.
doi:10.1038/srep15858

36. Wang, T., C. Jiang, J. Zou, J. Yang, K. Xu, C. Jin, G. Wang, G. P. Puccioni, and G. L. Lippi, "Nanolasers with feedback as low-coherence illumination sources for speckle-free imaging: A numerical analysis of the superthermal emission regime," Nanomaterials, Vol. 11, No. 36., 3325, 2021.
doi:10.3390/nano11123325

37. Brunner, D., L. Larger, and M. C. Soriano, "Nonlinear photonic dynamical systems for unconventional computing," Nonlinear Theory and Its Applications, IEICE, Vol. 13, No. 37., 26-35, 2022.
doi:10.1587/nolta.13.26

38. Puccioni, G. P. and G. L. Lippi, "Stochastic Simulator for modeling the transition to lasing," Opt. Express, Vol. 23, No. 3, 2369-2374, 2015.
doi:10.1364/OE.23.002369

39. Lippi, G. L., T. Wang, and G. P. Puccioni, "`Phase transitions' in small systems: Why standard threshold definitions fail for nanolasers," Chaos, Solitons and Fractals, Vol. 157, No. 39., 111850, 2022.
doi:10.1016/j.chaos.2022.111850

40. Rice, P. R. and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy," Phys. Rev. A, Vol. 50, No. 40., 4318, 1994.
doi:10.1103/PhysRevA.50.4318

41. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation," IEEE J. Sel. Top. Quantum Electron., Vol. 26, No. 41., 1500707, 2020.

42. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, No. 42., 1364, 2013.
doi:10.1038/ncomms2368

43. Yue, D., Z. Wu, Y. Hou, B. Cui, Y. Jin, M. Dai, and G. Xia, "Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection," Opt. Exp., Vol. 27, No. 14, 19931-19939, 2019.
doi:10.1364/OE.27.019931

44. Yue, D., Y. Hou, Z. Wu, C. Hu, Z. Xiao, and G. Xia, "Experimental investigation of an optical reservoir computing system based on two parallel time-delay reservoirs," IEEE Photonics Journal, Vol. 13, No. 3, 8500111, 2021.
doi:10.1109/JPHOT.2021.3075055

45. Koster, F., S. Yanchuk, and K. Ludge, "Insight into delay based reservoir computing via eigenvalue analysis," J. Phys. Photonics, Vol. 3, No. 45., 024011, 2021.
doi:10.1088/2515-7647/abf237

46. Hulser, T., F. Koster, L. Jaurigue, and K. Ludge, "Role of delay-times in delay-based photonic reservoir computing," Opt. Mater. Express, Vol. 12, No. 46., 1214-1231, 2022.
doi:10.1364/OME.451016

47. Sugano, C., K. Kanno, and A. Uchida, "Reservoir computing using multiple lasers with feedback on a photonic integrated circuit," IEEE J. Sel. Topics Quantum Electron., Vol. 26, No. 1, 1-9, 2020.
doi:10.1109/JSTQE.2019.2929179

48. Taylor, J., "Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements," University Science Books, No. 48., 349 (cit. on p. 84), 1997.