Vol. 119
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-14
H -Matrix Solver for the Acceleration of Boundary Integral Equation for Photonic Crystal Fiber
By
Progress In Electromagnetics Research M, Vol. 119, 25-35, 2023
Abstract
A waveguide mode solver based on boundary integral equation (BIE) method and matrix compression is developed in this study. Using an accurate discretization based on a Nystrom method and a kernel-splitting technique, the BIE method gives rise to three different formulations of a nonlinear eigenvalue problem. H-matrices are used in order to accelerate and increase the precision of the subsequent computations. Results from these investigations on a canonical photonic crystal fiber (PCF) chosen as an example demonstrate that the data sparse representation of the BIE discretization reduces the memory storage, as well as the assembly and solution times.
Citation
Jean-René Poirier, Julien Vincent, Priscillia Daquin, Ronan Perrussel, and Han Cheng Seat, "H -Matrix Solver for the Acceleration of Boundary Integral Equation for Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 119, 25-35, 2023.
doi:10.2528/PIERM23032408
References

1. Russel, P., "Photonic crystal fibers," Science, Vol. 299, No. 5605, 358-362, Jan. 2003.
doi:10.1126/science.1079280

2. Vassallo, C., Optical Waveguide Concepts, Elsevier, Amsterdam, 1991.

3. Chiou, Y. P., Y. C. Chiang, C. H. Lai, C. H. Du, and H. C. Chang, "Finite difference modeling of dielectric waveguides with corners and slanted facets," Journal of Lightwave Technology, Vol. 27, No. 12, 2077-2086, Dec. 2009.
doi:10.1109/JLT.2008.2006862

4. Brechet, F., J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method," Optical Fiber Technology, Vol. 6, 181-191, Apr. 2000.
doi:10.1006/ofte.1999.0320

5. Selleri, S., L. Vincetti, L. A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Optical Quantum Electronics, Vol. 33, 359-371, 2001.
doi:10.1023/A:1010886632146

6. Monro, T. M., D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Modeling large air fraction holey optical fibers," Journal of Lightwave Technology, Vol. 18, No. 1, 50-56, Jan. 2000.
doi:10.1109/50.818906

7. Alivizatos, E. G., I. D. Chremmos, N. L. Tsitsas, and N. K. Uzunoglu, "Green's-function method for the analysis of propagation in holey fibers," Journal of Optical Society of America, Vol. 21, No. 5, 847-857, May 2004.
doi:10.1364/JOSAA.21.000847

8. White, T. P., B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," Journal of Optical Society of America, Vol. 19, No. 10, 2322-2330, Oct. 2002.
doi:10.1364/JOSAB.19.002322

9. Lu, W. and Y. Y. Lu, "Efficient boundary integral equation method for photonic crystal fibers," Journal of Lightwave Technology, Vol. 30, No. 11, 1610-1616, Jun. 2012.
doi:10.1109/JLT.2012.2189355

10. Lu, W. and Y. Y. Lu, "Efficient high order waveguide mode solvers based on boundary integral equations," Journal of Computational Physics, Vol. 272, 507-525, Apr. 2014.
doi:10.1016/j.jcp.2014.04.028

11. Song, J. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave and Optical Technology Letters, Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107

12. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, 565-589, 2000.
doi:10.1007/PL00005410

13. Grasedyck, L. and W. Hackbusch, "Construction and arithmetics of H-matrices," Computing, Vol. 70, 295-334, 2003.
doi:10.1007/s00607-003-0019-1

14. Beyn, W.-J., "An integral method for solving nonlinear eigenvalue problems," Linear Algebra and Its Applications, Vol. 436, No. 10, 3839-3863, 2012.
doi:10.1016/j.laa.2011.03.030

15. Kress, R., "On the numerical solution of a hypersingular integral equation in scattering theory," Journal of Computational and Applied Mathematics, Vol. 61, 345-360, Jun. 1995.
doi:10.1016/0377-0427(94)00073-7

16. Cheng, R., W. Y. Crutchfield, M. Doery, and L. Greengard, "Fast, accurate integral equation methods for the analysis of photonic crystal fibers. I: Theory," Optics Express, Vol. 12, No. 16, 3791-3805, 2004.
doi:10.1364/OPEX.12.003791

17. Bebendorf, M., "Hierarchical matrices --- A means to efficiently solve elliptic boundary value problems," Lecture Notes in Computational Science and Engineering, Springer, 2008.

18. Bebendorf, M., "A hierarchical LU decomposition-based preconditioners for BEM," Computing, Vol. 74, 225-247, 2005.
doi:10.1007/s00607-004-0099-6

19. Daquin, P., R. Perrussel, and J.-R. Poirier, "Hybrid cross approximation for the electric field integral equation," Progress In Electromagnetics Research M, Vol. 75, 79-90, 2018.
doi:10.2528/PIERM18052803

20. Soudais, P., "Iterative solution of a 3-D scattering problem from arbitrary shaped multidielectric and multiconducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 7, 954-959, Jul. 1994.
doi:10.1109/8.299597