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H-Matrix Solver for the Acceleration of Boundary Integral Equation
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Abstract—A waveguide mode solver based on boundary integral equation (BIE) method and matrix
compression is developed in this study. Using an accurate discretization based on a Nyström method
and a kernel-splitting technique, the BIE method gives rise to three different formulations of a nonlinear
eigenvalue problem. H-matrices are used in order to accelerate and increase the precision of the
subsequent computations. Results from these investigations on a canonical photonic crystal fiber (PCF)
chosen as an example demonstrate that the data sparse representation of the BIE discretization reduces
the memory storage, as well as the assembly and solution times.

1. INTRODUCTION

Photonic crystal fibers (PCFs) are complex systems that have been increasingly exploited over the past
two decades in optoelectronic systems to enhance the propagation of light [1, 2]. The geometry of these
optical waveguides, together with the dielectric characteristics of the materials and the wavelength of the
light source traveling through the fiber define the essential parameters for the propagation of information.
These parameters are used to determine the effective refractive index, which can be a complex number.
Resolving the complexity of these optical systems — heterogeneous structure, geometry of the waveguide
section, and micrometric order of magnitude — thus requires powerful optimized numerical methods
and tools in electromagnetism for the rapid design of PCFs for the desired application.

The finite-difference time-domain (FDTD) method and the finite element method (FEM) are the
most common approaches used to solve the problem of PCF propagation [3–5]. However, both FDTD
and FEM may require a huge amount of memory and computation time, as a function of the mesh
size for a PCF with many microstructures. More specific techniques such as a modal approach [6],
a particular Green function [7] or the multipole method [8] can also be considered for this problem,
but they are often limited to some types of inclusions (circular for instance). More recently, some
tools based on the boundary element method (BEM) [9, 10] have been proposed which can allow to
consider only the mesh on the boundary of the inclusions. Furthermore, the BEM can now generally
be improved with compression techniques such as the fast multipole method [11] or the hierarchical
matrices (H-matrices) [12, 13].

The main novelty of this work lies in the adaptation of these compression techniques to the
peculiarities of the BEM applied to the PCF discretization [9, 10], namely the particular block structure
of the matrix of the problem and the multiple solutions due to the numerical method [14] required to
deal with the nonlinearity of the problem.

The paper is organized as follows. Section 2 is devoted to the description of the BEM formulation of
the PCF problem modeling. In Section 3, the theory of H-matrices is introduced for reducing memory
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storage and accelerating the solution. In Section 4, the validity and efficiency of several strategies are
studied. Finally, the method is applied to determine the effective refractive index for the chosen example
with high accuracy.

2. PROBLEM FORMULATION

2.1. Maxwell’s Equations and Transmission Conditions

Let us consider a PCF invariant along the z-direction with C homogeneous inclusions (Ωj)j=1,...,C with
the refractive index (RI) nj , embedded in a homogeneous infinite background material Ω0 with RI
n0. The dependence of the electromagnetic field in z is then taken into account by a term exp(iβz)
meaning an exp(−iωt) dependence with i the imaginary unit and β a propagation constant. Normal
and tangential vectors to the boundaries are respectively denoted by ν and τ . Figure 1 is an example
of a three-inclusions PCF with such notations (C = 3, j = 1, 2, 3).

Figure 1. Representation of a three-inclusions PCF with associated notations.

In the transverse plan (O,x,y), the electric field E and the magnetic field H satisfy the Helmholtz
equation. Moreover, the interface conditions relate the RIs to the tangential and normal derivatives
of the tangential components of the electromagnetic field. In the following, the scalar unknowns E

and H refer to the z-components of the electromagnetic field such that E = Ez and H =
√

µ0

ε0
Hz.

Equations (1) and (2) are satisfied in each Ωj , and transmission conditions across boundaries Γj are
defined by Equations (3) to (6); see also [16].[

∇2 + (k2 − β2)
]
E = 0, in Ωj , ∀j ∈ J1;CK, (1)[

∇2 + (k2 − β2)
]
H = 0, in Ωj , ∀j ∈ J1;CK, (2)
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= 0, ∀j ∈ J1;CK, (3)
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, ∀j ∈ J1;CK, (6)

where [E]Γj represents the jump of E across Γj ; nj is the RI in the domain Ωj ; k = k0nj is the
wavenumber in Ωj ; and k0 = 2π/λ0 is the free space wavenumber. The propagation of light inside the
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PCF is determined by the value of β which can be complex. The imaginary part of β can be very
small for leaky modes. Accurate solvers are therefore needed to compute the effective RI neff , with
neff = k0/β.

2.2. BIE Method for the PCF

In this section, a PCF is described with C homogeneous inclusions with the same RI ni, embedded in
an infinite medium Ω0 with RI n0. On the interfaces ∂Ωj , the single and double layer potentials inside
and outside the inclusions give the relations between the electric and magnetic fields, and their normal
derivatives through the Green function G defined by

G(r, r̃) =
i

4
H

(1)
0

(
(k2 − β2)|r− r̃|

)
, r ̸= r̃ (7)

where H
(1)
0 is a Hankel function. The field u = E or H can be given by the representation formula [9, 10]

u(r) = ±

(∫
∂Ωj

G(r, r̃)
∂u(r̃)

∂ν
ds(r̃)−

∫
∂Ωj

∂G(r, r̃)

∂ν(r̃)
u(r̃)ds(r̃)

)
, r /∈ ∂Ωj , (8)

where the ± sign corresponds respectively to the interior and exterior domains. Using the properties of
the single and double layer potentials when r tends to ∂Ωj , we obtain the following integral equation
to express the normal derivative of u

∂u(r)

∂ν
=

1

2

∂u(r)

∂ν
±

(∫
∂Ωj

∂G(r, r̃)

∂ν(r)

∂u(r̃)

∂ν
ds(r̃)−

∫
∂Ωj

∂2G(r, r̃)

∂ν(r̃)∂ν(r)
u(r̃)ds(r̃)

)
, r ∈ ∂Ωj .

Using the notations u = E = µEi for the interior field on any boundary ∂Ωj and σEi = ∂u
∂νi

(r) for
the corresponding inside derivative, we can rewrite this equation in terms of operators(

1

2
Id− Ji

)
σEi = −Wiµ

E
i on any ∂Ωj (9)

where Id is the identity operator, and Ji and Wi are the following singular operators
(Jiψ)(r) =

∫
∂Ωj

∂G(r, r̃)

∂ν(r)
ψ(r̃), ds(r̃), r ∈ ∂Ωj ,

(Wiψ)(r) =

∫
∂Ωj

∂2G(r, r̃)

∂ν(r)∂ν(r̃)
ψ(r̃) ds(r̃), r ∈ ∂Ωj .

(10)

With similar notations u = E = µEe for the outside field on any boundary ∂Ωj , and σ
E
e = ∂u

∂νe
(r)

for the corresponding outside derivative, we define the boundary integral equation as

(Id+ Je)σ
E
e =Weµ

E
e on any ∂Ωj . (11)

In the background material Ω0, all inclusions interact with the others, and Je and We are therefore
provided by 

(Jeψ)(r) =
C∑
l=1

∫
∂Ωl

∂G(r, r̃)

∂ν(r)
ψ(r̃) ds(r̃),

(Weψ)(r) =
C∑
l=1

∫
∂Ωl

∂2G(r, r̃)
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(12)

Similar equations can also be derived for the field u = H.
To express the transmission conditions (5) and (6), we also consider the discretized tangential

operator T ∼ ∂τ . We can now provide the expression of the complete problem using Equations (9)
and (11), and the transmission condition (3) to obtain

µEi = µEe = µE ⇒
(
1

2
Id− Ji

)
σEi = −Wiµ

E and (Id+ Je)σ
E
e =Weµ

E ,
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and the transmission condition (4) to obtain

µHi = µHe = µH ⇒
(
1

2
Id− Ji

)
σHi = −Wiµ

H and (Id+ Je)σ
H
e =Weµ

H ,

as well as the transmission conditions (5) and (6) to further obtain

c0σ
E
i − c1σ

E
e = c2Tµ

H ,

c3σ
H
i − c4σ

H
e = c2Tµ

E .

In the above equations, the constants ci, i ∈ J1; 5K are defined by
c0 = − n2i

n2i − n2eff
, c1 =

n20
n20 − n2eff

, c2 =

(
neff

n20 − n2eff
−

neff
n2i − n2eff

)

c3 =
1

n2i − n2eff
=
k20
k2i
, c4 = − 1

n20 − n2eff
= −k

2
0

k2e
.

2.3. The Nonlinear Algebraic Problem

Using an accurate discretization based on the Nyström method [9, 10] and a kernel-splitting
technique [15], we obtain a linear system represented by a block matrix. We denote B1 the discretization
of (Id − Ji) and B2 the discretization of (Id + Je). Note also that B1 is a block diagonal matrix with
C separated blocks, and B2 is a priori a full matrix. If we keep the same notations, We, Wi, and T are
now discrete counterparts of the corresponding integral or differential operators, and in the same way,
we have discrete counterparts of respectively µE , σEi , σ

E
e , µ

H , σHi , and σHe . Using the substitutions

σEe =
c0
c1
σEi − c2

c1
TµH and σHe =

c2
c4
TµE − c3

c4
σHi ,

we obtain a reduced linear system
We −c0

c1
B2

c2
c1
B3 0

Wi B1 0 0
c2
c4
B3 We −c3

c4
B2

0 0 Wi B1

 ·


µE

σEi
µH

σHi

 = 0. (13)

where B3 = B2T .
This system (13) requires a full but compressed matrix (as detailed in Subsection 3.1) in the product

B3 = B2T , and the resulting matrix is of the same structure. The resulting linear system is reduced to
4 unknowns with an additional cost for assembling the matrix.

Another approach provides a 2× 2 block matrix, using

Wiµ
E = −B1σ

E
i and Wiµ

H = −B1σ
H
i ,

and this then leads to We +
c0
c1
B2B

−1
1 Wi

c2
c1
B3

c2
c4
B3 We +

c3
c4
B2B

−1
1 Wi

 ·
[
µE

µH

]
= 0. (14)

This step requires inverting a block matrix with sparse part and two additional matrix/matrix
products, but the size of the linear system to solve is reduced by half.

In both cases, the final system is a problem that can be expressed in the form

F (neff )Ψ = 0. (15)

Equation (15) gives rise to a nonlinear eigenvalue problem to solve. For a given complex value neff ,
a mode of the PCF is determined by the point where the matrix F becomes singular. Following [9],
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finding all modes of the PCF consists in seeking the zeros of a function f defined by (16) where ϕ and
ψ ∈ Cn×p are two random complex rectangular matrices.

f(neff ) =
1

∥ϕTF−1(neff )ψ∥2
. (16)

The zeros can be found by the Muller method. Numerically, computation of F−1(neff )ψ consists in
solving a linear system with several right-hand sides. Consequently, a limitation of this approach in
terms of compression tools like H-matrix will be the fact that near the solution, F (neff ) is singular and
may be strongly affected by the approximation.

We will thus employ an approach based on contour integral (CI), as described in [14]. In both
methods (Muller and CI), the problem will consist in solving the same linear system already defined by
the matrix F and a random right-hand side, but in the CI method, we only need to compute for a set
of value s (typically 5 to 20) of neff that are not in the vicinity of the roots of F .

3. ASSEMBLY OF THE PROBLEM IN H-MATRIX FORMAT

3.1. H-Matrix

3.1.1. Clustering and H-Matrix

Let us first recall the general principles of hierarchical matrices for integral equations (IEs). The
first step consists in a hierarchical subdivision of the geometry of the target under investigation into
particular regions. Due to the IEs, two regions have interactions that are represented by particular
blocks in the matrix after discretization. Some of these blocks have compression properties, i.e., they
can be approximated by low-rank matrices. In this work, Adaptive Cross Approximation (ACA) is
performed to build the low-rank matrices. The accuracy of this approximation is controlled by a
threshold parameter ϵACA. The distribution of the blocks is obtained thanks to a hierarchical division
of the geometry (clustering) by a binary tree, as shown in Figure 2(a).

(b1) (b2)

(a) (b)

Figure 2. Initial construction of an H-matrix and coarsening. (a) Clustering of a circle discretized by
32 points and the resulting H-matrix. The green blocks can be compressed contrary to the red ones.
(b) Effect of coarsening of an H-matrix.

3.1.2. Coarsening

In a second step, a purely algebraic and geometry-independent recompression, known as coarsening,
allows to optimize and simplify the hierarchical structure, as represented in Figure 2(b).

3.2. Assembly of Block Matrix: Numerical Results

We begin the numerical study by the assembly of the matrix F . The test case used in this work is a PCF
with many holes, as illustrated in Figure 3. We will consider the matrices FH

2 and FH
4 corresponding
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Figure 3. PCF with 121 holes for numerical tests.

to the H-matrix building for, respectively, the problem with 2 unknowns (µE , µH) and 4 unknowns
(µE , µH , σEi , σ

H
i ). The approach without compression will be denoted as F d

2 and F d
4 as the direct

approach for, respectively, the problem with 2 unknowns and 4 unknowns.
The numerical tests in this section correspond to several discretizations of the fiber illustrated in

Figure 3 with the following parameters: the free space wavelength is λ = 1.51µm. Each inclusion has
a diameter of 2.603µm, and the RI of the glass matrix is 1.45.

Figures 4(a) and 4(b) show the evolution of the assembly time and the required memory vs the
total number of unknowns N by taking into account several values of the accuracy parameter ϵACA (see
Subsection 3.1).

(a) (b)

Figure 4. Study relatively to the accuracy parameter. (a) CPU time. (b) Memory.

Table 1. Accuracy for the computation of f at some distance of a root.

ϵACA 10−10 10−8 10−6

EH 1.376 10−8 1.480 10−6 1.255 10−4

In both cases, we observe that we are close to the theoretical curve in O(N log(N)) for the H-matrix
assembly that becomes more efficient when the size of the problem increases. Note that the numerical
tests are more focused on the strategy with 2 unknowns, which is the most efficient if we consider the
assembly and solution set. For estimating the accuracy obtained in Table 1, we define the error on the
solution as

EH = ∥uH − uref ∥2
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where uH is the solution of the linear system solved with the compressed hierarchical matrix, and
uref is the solution of the linear system without compression. The right-hand side is the random
matrix ψ ∈ Cn×p defined previously. The same matrix was taken for the entire numerical experiences.
Parameters of the solution (next section) are taken very accurate to focus the error study on the
compression accuracy.

For these tests, we choose a particular point which is one of the simulation points considered in the
solution method [14] of the nonlinear problem. This point is not close to the singularity.

As a result, ϵACA provides a control on the resulting error EH, even if it cannot be exactly
guaranteed that EH 6 ϵACA.

4. H-LU SOLVER AND PRECONDITIONING

4.1. Theory

One of the advantages of the H-matrix format is the ability to perform an LU decomposition directly
in a hierarchical format [17]. This operation will be denoted as H-LU, and its accuracy is controlled by
a parameter ϵLU. This factorization allows a fast “direct” solution, or the construction of an efficient
preconditioner by applying H-LU to a coarser approximation of the matrix [18, 19]. This preconditioner
will be denoted by P-HLU in the results, and its accuracy is controlled by a parameter ϵprec.

4.2. Some Numerical Tests

4.2.1. Accuracy of the H-Matrix Solver

We now turn our focus to the efficiency of the H-matrix solver (or preconditionner) which is involved
in the nonlinear solution process. The computed error is still relative to the solution obtained by the
direct solver without compression. Here, direct or iterative solver corresponds to the strategy used to
solve F−1(neff )ψ in (16). The error for the direct H-LU solver is controlled by ϵLU. The considered
iterative method is a Krylov solver for multiple right-hand sides denoted as MGCR and defined in [20];
its error is controlled by the tolerance parameter ϵsolver. This iterative solver is preconditioned by a
P-HLU approach whose accuracy ϵprec is set to 10−4. It can be seen in Tables 2 and 3 that the H-matrix
solver is relatively efficient in maintaining a “good” accuracy on the cost function proportional to the
compression accuracy ϵACA.

Table 2. Accuracy for the computation of f at some distance of a root.

ϵsolver = ϵLU 10−10 10−8 10−6 10−4

EH H-LU 6.309 10−8 6.761 10−6 8.061 10−4 1.213 10−1

EH P-HLU+MGCR 1.408 10−10 1.590 10−8 2.856 10−7 1.142 10−4

Table 3. Accuracy for the computation of f at some distance of a root.

ϵACA 10−10 10−8 10−6

ϵsolver 10−8 10−6 10−4

EH P-HLU+MGCR 1.590 10−8 1.507 10−6 1.656 10−4

4.2.2. Some Strategies for the Solver Computation Times

It is noted here that the layout of the blocks has a large influence on the computation process. Our
tests suggest that the best strategy will be to keep the full blocks at the bottom part of the matrix. For
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the system defined by (13), it leads, for instance, to the following ordering
Wi 0 B1 0

0 Wi 0 B1

We
c2
c1
B3 −c0

c1
B2 0

c2
c4
B3 We 0 −c3

c4
B2

 ·


µE

µH

σEi
σHi

 = 0. (17)

One explanation could be that these particular orderings minimize the initial fill-in of the matrix
during the implementation of the H-LU algorithm.

Table 4 summarizes the computation times and the corresponding number of iterations in the
iterative solver with the P-HLU preconditioner, depending on the accuracy on the preconditioner.

Table 4. Computation time with the reordered matrix. ϵACA = 10−8 and ϵsolver = 10−6. rhs denotes
right-hand side.

ϵprec 10−6 10−5 10−4 10−3

Niter (20 rhs) 40 60 100 198

CPU Multi GCR (s) 4.77 s 6.96 s 11.31 s 22.16 s

CPU P-HLU-Prec (s) 87.53 s 76.22 s 66.25 s 55.60 s

CPU P-HLU-Prec + MGCR (s) 92.30 s 83.18 s 77.56 s 77.76 s

As a result, it seems that the optimal choice for computation times would be to set the accuracy
around 10−4 for the preconditioner. It is also interesting to note that 10−5 and 10−3 are numerically
not so far apart, implying that the computation time does not strongly depend on the accuracy of the
preconditioner.

4.2.3. Comparison with the Direct Solver Approach

We now consider the performances in terms of computation times of the H-matrix solver, used as a
direct solver (ϵLU = 10−8) or as a preconditioner (ϵprec = 10−4), to that of the direct uncompressed
solution which is used here as the reference.

As illustrated in Figure 5, the H-LU solver becomes faster than the direct solver and with a
complexity of O(N log(N)), for size N between 10, 000 and 20, 000 unknowns with an advantage for the
preconditionning strategy.

Figure 5. Direct vs H-matrix solver.
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5. SOLUTION OF THE NONLINEAR PROBLEM

In the following numerical examples, Nd denotes the number of discretization points considered on one
“hole” of the PCF (see Figure 3).

5.1. Error Study on the Nonlinear Eigenvalue Problem

In this last section, we investigate the effect of the accuracy of the compression on the final solution of
the nonlinear problem related to PCF from Figure 3 (see Table 5).

Table 5. Accuracy of the nonlinear problem with Nd = 30 except for the central hole where Nd = 86.

ϵACA ϵsolver Solution 1 Solution 2

10−11 10−9 0.984516211638 + i3.39941801 10−8 0.984516119959 + i3.39958587 10−8

10−10 10−8 0.984516211637 + i3.39908256 10−8 0.984516119959 + i3.39942039 10−8

10−9 10−7 0.984516211620 + i3.39583076 10−8 0.984516120018 + i3.40187262 10−8

10−8 10−6 0.984516211700 + i3.43882404 10−8 0.984516119644 + i3.45863975 10−8

10−7 10−5 0.984516210338 + i3.39416590 10−8 0.984516124987 + i3.56678295 10−8

10−6 10−4 0.984516190377 + i1.53222381 10−8 0.984516152082 + i4.43654762 10−8

0. 0. 0.984516211638 + i3.39935774 10−8 0.984516119958 + i3.39956748 10−8

As a result, the accuracy on the computed neff follows the solution parameters ϵACA and ϵsolver
settings.

5.2. A Large Example Computation

Finally, we implement the H-matrix solver on the following large-size PCF comprising 294 holes, as
illustrated in Figure 6.

Figure 6. Large Hollow-core simulation.

Global dimensions and properties of the material for this example are taken the same as described
in the previous PCF example.
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Table 6. neff solution of the nonlinear problem.

Nd N F2 direct FH
2 N FH

4

16 4704 0.9842819532 + 7.80531 10−5i 0.9842819533 + 7.80531 10−5i 9408 0.9842819533 + 7.80531 10−5i

20 11760 0.9840368193 + 5.90451 10−6i 0.9840368195 + 5.90443 10−6i 23520 0.9840368193 + 5.90446 10−6i

24 14112 0.9839110693 + 2.41149 10−8i 0.9839110693 + 2.41081 10−8i 28224 0.9839110693 + 2.41129 10−8i

30 17640 0.9839178418 + 2.11891 10−8i 0.9839178418 + 2.11956 10−8i 35280 0.9839178418 + 2.11929 10−8i

34 19992 0.9839190263 + 2.13405 10−8i 39984 0.9839190262 + 2.13181 10−8i

40 23520 0.9839190191 + 2.13172 10−8i 47040 0.9839190191 + 2.13128 10−8i

Table 6 illustrates the convergence of our method with FH
2 and FH

4 strategies, and with respect to
the mesh density employed.

For validation purposes, we compute the direct solution for the maximum number of unknowns
allowed by the memory.

As illustrated by the solution in Table 6, “very” good correspondence between the solutions with
several strategies is achieved. The H-matrix solver allows now to increase the size of the problem and
the accuracy for the final PCF solution.

6. CONCLUSION

In this paper, we have proposed a methodology to apply hierarchical methods to efficiently solve a
system of coupled BEM equations involved in a nonlinear solver for PCF applications. Although it is
penalized by a large constant due to the complex nature of the problem, the proposed solution allows
to recover the usual complexity in O(N log(N)) for both computation times and memory and then be
able to solve nonlinear problems of large sizes, which would otherwise be impossible.
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