Vol. 177
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-06-19
Terahertz Plasmonic Metagrating Design Simultaneously Enabling Broadband Extraordinary Transmission and Field Enhancement
By
Progress In Electromagnetics Research, Vol. 177, 85-94, 2023
Abstract
Metagratings, consisting of subwavelength-aperture arrays (SAAs), provide a powerful platform to manipulate electromagnetic waves. Typical examples include extraordinary optic transmission (EOT) in the far field, and field enhancements (FEs) in the near field. These capabilities promise applications in beam steering and wave-matter interactions, but are not extended to broad bandwidth simultaneously. Here, we transplant the concept of broadband light harvesting devices from optic to terahertz frequency and by exploring one-dimensional arrays of spirally textured metallic cylinders supporting multiple designer localized surface plasmon resonances. Theoretical analysis reveals that the interaction between localized plasmons leads to the broadband THz EOTs in the far field as well as large field enhancements in the near field. The bandwidth of the EOT and the magnitude of field enhancements can be flexibly designed by changing the geometry of the plasmonic-like resonators. This design promises applications in THz broadband beam-steering, absorbers, and sensing, topological devices.
Citation
Chi Wang, Shurun Tan, Xiao Lin, Hongsheng Chen, and Fei Gao, "Terahertz Plasmonic Metagrating Design Simultaneously Enabling Broadband Extraordinary Transmission and Field Enhancement," Progress In Electromagnetics Research, Vol. 177, 85-94, 2023.
doi:10.2528/PIER23031001
References

1. Garcia de Abajo, F. J., "Colloquium: Light scattering by particle and hole arrays," Reviews of Modern Physics, Vol. 79, 1267-1290, 2007.
doi:10.1103/RevModPhys.79.1267

2. Garcia-Vidal, F. J., L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, Vol. 82, 729-787, 2010.
doi:10.1103/RevModPhys.82.729

3. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, Vol. 9, 193-204, 2010.
doi:10.1038/nmat2630

4. Dombi, P., Z. Papa, J. Vogelsang, S. V. Yalunin, M. Sivis, G. Herink, S. Schafer, P. Groβ, C. Ropers, and C. Lienau, "Strong-field nano-optics," Reviews of Modern Physics, Vol. 92, 025003, 2020.
doi:10.1103/RevModPhys.92.025003

5. Rajabali, S., E. Cortese, M. Beck, S. De Liberato, J. Faist, and G. Scalari, "Polaritonic nonlocality in light-matter interaction," Nature Photonics, Vol. 15, 690-695, 2021.
doi:10.1038/s41566-021-00854-3

6. Lu, M. H., X. K. Liu, L. Feng, J. Li, C. P. Huang, Y. F. Chen, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Extraordinary acoustic transmission through a 1D grating with very narrow apertures," Physical Review Letters, Vol. 99, 174301, 2007.
doi:10.1103/PhysRevLett.99.174301

7. Christensen, J., L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of resonant acoustic transmission through subwavelength apertures," Physical Review Letters, Vol. 101, 014301, 2008.
doi:10.1103/PhysRevLett.101.014301

8. Estrada, H., F. J. Garcia de Abajo, P. Candelas, A. Uris, F. Belmar, and F. Meseguer, "Angle-dependent ultrasonic transmission through plates with subwavelength hole arrays," Physical Review Letters, Vol. 102, 144301, 2009.
doi:10.1103/PhysRevLett.102.144301

9. Zhu, J., J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia- Vidal, "A holey-structured metamaterial for acoustic deep-subwavelength imaging," Nature Physics, Vol. 7, 52-55, 2010.
doi:10.1038/nphys1804

10. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667-669, 1998.
doi:10.1038/35570

11. Hanham, S. M., A. I. Fernandez-Dominguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, "Broadband terahertz plasmonic response of touching InSb disks," Advanced Materials, Vol. 24, OP226-230, 2012.
doi:10.1002/adma.201202003

12. Seo, M. A., H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nature Photonics, Vol. 3, 152-156, 2009.
doi:10.1038/nphoton.2009.22

13. Gomez Rivas, J., C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Physical Review B, Vol. 68, 201306, 2003.
doi:10.1103/PhysRevB.68.201306

14. Qu, D., D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Optics Express, Vol. 29, 896-898, 2004.

15. Azad, A. K. and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Optics Express, Vol. 30, 2945-2947, 2005.

16. Rivas, J. G., C. Janke, P. H. Bolivar, and H. Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Optics Express, Vol. 13, 847-859, 2005.
doi:10.1364/OPEX.13.000847

17. Lee, J. W., M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets," Physical Review Letters, Vol. 99, 137401, 2007.
doi:10.1103/PhysRevLett.99.137401

18. Chen, H.-T., H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O'Hara, and A. J. Taylor, "Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays," Optics Express, Vol. 16, 7641-7648, 2008.
doi:10.1364/OE.16.007641

19. Masson, J.-B., A. Podzorov, and G. Gallot, "Extended Fano model of extraordinary electromagnetic transmission through subwavelength hole arrays in the terahertz domain," Optics Express, Vol. 17, 15280-15291, 2009.
doi:10.1364/OE.17.015280

20. Wu, J., H. Dai, H. Wang, B. Jin, T. Jia, C. Zhang, C. Cao, J. Chen, L. Kang, W. Xu, and P. Wu, "Extraordinary terahertz transmission in superconducting subwavelength hole array," Optics Express, Vol. 19, 1101-1106, 2011.
doi:10.1364/OE.19.001101

21. Gao, W., J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu, "High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures," Nano Letters, Vol. 14, 1242-1248, 2014.
doi:10.1021/nl4041274

22. Banerjee, S., N. Lok Abhishikth, S. Karmakar, D. Kumar, S. Rane, S. Goel, A. K. Azad, and D. Roy Chowdhury, "Modulating extraordinary terahertz transmissions in multilayer plasmonic metasurfaces," Journal of Optics, Vol. 22, 125101, 2020.
doi:10.1088/2040-8986/abc1c6

23. Ren, X.-P., R.-H. Fan, R.-W. Peng, X.-R. Huang, D.-H. Xu, Y. Zhou, and M. Wang, "Nonperiodic metallic gratings transparent for broadband terahertz waves," Physical Review B, Vol. 91, 045111, 2015.
doi:10.1103/PhysRevB.91.045111

24. Nguyen, T. K., P. T. Dang, I. Park, and K. Q. Le, "Broadband THz radiation through tapered semiconductor gratings on high-index substrate," Journal of the Optical Society of America B, Vol. 34, 583-589, 2017.
doi:10.1364/JOSAB.34.000583

25. Song, J., Y. Shi, X. Liu, M. Li, X. Wang, and F. Yang, "Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays," Optical Materials Express, Vol. 11, 2700-2710, 2021.
doi:10.1364/OME.430500

26. Huang, X. R., R. W. Peng, and R. H. Fan, "Making metals transparent for white light by spoof surface plasmons," Physical Review Letters, Vol. 105, 243901, 2010.
doi:10.1103/PhysRevLett.105.243901

27. Alu, A., G. D'Aguanno, N. Mattiucci, and M. J. Bloemer, "Plasmonic brewster angle: Broadband extraordinary transmission through optical gratings," Physical Review Letters, Vol. 106, 123902, 2011.
doi:10.1103/PhysRevLett.106.123902

28. Subramania, G., S. Foteinopoulou, and I. Brener, "Nonresonant broadband funneling of light via ultrasubwavelength channels," Physical Review Letters, Vol. 107, 163902, 2011.
doi:10.1103/PhysRevLett.107.163902

29. Fan, R. H., R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, X. Zhang, and , "Transparent metals for ultrabroadband electromagnetic waves," Advanced Materials, Vol. 24, 1980-1986, 2012.
doi:10.1002/adma.201104483

30. Liao, Z., A. I. Fernandez-Dominguez, J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, "Homogenous metamaterial description of localized spoof plasmons in spiral geometries," ACS Photonics, Vol. 3, 1768-1775, 2016.
doi:10.1021/acsphotonics.6b00488

31. Kong, J. A., Electromagnetic Wave Theory, Wiley, 2008.

32. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. III, Advanced Topics, Wiley, 2001.
doi:10.1002/0471224278

33. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. II, Numerical Simulations, Wiley, 2001.
doi:10.1002/0471224308

34. Kushta, T. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101

35. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Physical Review Letters, Vol. 108, 114301, 2012.
doi:10.1103/PhysRevLett.108.114301

36. Cheng, Y., C. Zhou, B. G. Yuan, D. J. Wu, Q. Wei, and X. J. Liu, "Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances," Nature Materials, Vol. 14, 1013-1019, 2015.
doi:10.1038/nmat4393

37. Liu, F., S. Zhang, L. Luo, W. Li, Z. Wang, and M. Ke, "Superscattering of sound by a deep-subwavelength solid mazelike rod," Physical Review Applied, Vol. 12, 064063, 2019.
doi:10.1103/PhysRevApplied.12.064063

38. Yang, Z., F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, "Topological acoustics," Physical Review Letters, Vol. 114, 114301, 2015.
doi:10.1103/PhysRevLett.114.114301

39. Xue, H., Y. Yang, F. Gao, Y. Chong, and B. Zhang, "Acoustic higher-order topological insulator on a kagome lattice," Nature Materials, Vol. 18, 108-112, 2019.
doi:10.1038/s41563-018-0251-x