Vol. 101
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-06-26
Defected Ground Structure Based High Gain, Wideband and High Diversity Performance Quad-Element MIMO Antenna Array for 5G Millimeter-Wave Communication
By
Progress In Electromagnetics Research B, Vol. 101, 1-16, 2023
Abstract
In this article, a planar compact grounded coplanar waveguide (GCPW)-fed 4-element multiple-input multiple-output (MIMO) antenna array with a defected ground structure (DGS) is demonstrated for fifth generation (5G) millimeter-wave (mmWave) communication. Each element of GCPW-fed mmWave MIMO antenna array contains a deformed pentagon-shaped radiating patch etched with a pair of identical circular slots in top surface and a DGS in bottom surface. To maintain low design complexity and compactness, a DGS is introduced and formed by embedding dual asymmetrical inverted T-shaped slots in the partial ground plane which enhance the gain and bandwidth of the antenna. The equivalent circuit model of the proposed DGS loaded GCPW-fed antenna is realized and presented. The proposed 4-element mmWave MIMO antenna array is realized by arranging the 4 identical antenna elements horizontally in a row with a distinct gap without any decoupling structure. It has the size of 1.02λ × 3.86λ × 0.021λ (at 25.66 GHz) and exhibits the measured bandwidth of 49.62% (25.30-42.0 GHz) with a peak gain of 12.02 dBi. Furthermore, the envelope correlation coefficient (ECC) < 0.0014, isolation > 24 dB between antenna elements, and channel capacity loss (CCL) < 0.29 bits/sec/Hz of the mmWave MIMO antenna array are attained over the entire mmWave frequency band.
Citation
Ashok Kumar, Ashok Kumar, and Arjun Kumar, "Defected Ground Structure Based High Gain, Wideband and High Diversity Performance Quad-Element MIMO Antenna Array for 5G Millimeter-Wave Communication," Progress In Electromagnetics Research B, Vol. 101, 1-16, 2023.
doi:10.2528/PIERB23030601
References

1. Thompson, J., X. Ge, H. C. Wu, R. Irmer, H. Jiang, G. Fettweis, and S. Alamouti, "5G wireless communication systems: Prospects and challenges," IEEE Commun. Mag., Vol. 52, No. 2, 62-64, 2014.
doi:10.1109/MCOM.2014.6736744

2. Wang, C. X., F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Commun. Mag., Vol. 52, No. 2, 122-130, 2014.
doi:10.1109/MCOM.2014.6736752

3. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, Vol. 102, No. 3, 366-385, 2014.
doi:10.1109/JPROC.2014.2299397

4. Desai, A., T. Upadhyaya, J. Patel, R. Patel, and M. Palandoken, "Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 62, No. 5, 2090-2103, 2020.
doi:10.1002/mop.32287

5. Li, Q. L., S. W. Cheung, D. Wu, and T. I. Yuk, "Optically transparent dual-band MIMO antenna using micro-metal mesh conductive lm for WLAN system," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 920-923, 2016.

6. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw, Antennas Propag., Vol. 11, No. 2, 271-279, 2017.
doi:10.1049/iet-map.2016.0738

7. Prabhu, P. and S. Malarvizhi, "Novel double-side EBG based mutual coupling reduction for compact quad port UWB MIMO antenna," AEU | Int. J Electron. Commun., Vol. 109, 146-156, 2019.
doi:10.1109/ACCESS.2017.2693342

8. Akbari, M., H. A. Ghalyon, M. Farahani, A. R. Sebak, and T. A. Denidni, "Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems," IEEE Access, Vol. 5, 6527-6537, 2017.
doi:10.1017/S1759078720001658

9. Malaisamy, K., M. Santhi, and S. Robinson, "Design and analysis of 4 x 4 MIMO antenna with DGS for WLAN applications," Int. J. Microw. Wirel. Technol., Vol. 13, No. 9, 979-985, 2021.
doi:10.1007/s11042-021-11827-7

10. Dharmarajan, A., P. Kumar, and T. J. O. Afullo, "A high gain UWB human face shaped MIMO microstrip printed antenna with high isolation," Multimed Tools Appl., Vol. 81, 34849-34862, 2022.

11. Kumar, A., A. Kumar, and A. Kumar, "Gain enhancement of a wideband rectangular ring monopole millimeter-wave antenna using arti cial magnetic conductor surface," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 10, e23319, 2022.
doi:10.1016/j.aeue.2021.153990

12. Ibrahim, A. A. and W. A. Ali, "High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks," AEU --- Int. J. Electron. Commun., Vol. 142, 153990, 2021.
doi:10.1049/iet-map.2016.0457

13. Sharawi, M. S., S. K. Podilchak, M. S. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," IET Microw., Antennas Propag., Vol. 11, 287-293, 2017.
doi:10.1080/09205071.2022.2040057

14. Thakur, V., N. Jaglan, and S. D. Gupta, "Side edge printed eight-element compact MIMO antenna array for 5G smartphone applications," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 12, 1685-1701, 2022.
doi:10.1109/ACCESS.2021.3107625

15. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and M. S. Sharawi, "10 element sub-6-GHz multi-band double-T based MIMO antenna system for 5G smartphones," IEEE Access, Vol. 9, 118662-118672, 2021.
doi:10.3390/s21217415

16. Kiani, S. H., A. Altaf, M. R. Anjum, S. Afridi, Z. A. Arain, S. Anwar, S. Khan, M. Alibakhshikenari, A. Lalbakhsh, M. A. Khan, et al. "MIMO antenna system for modern 5G handheld devices with healthcare and high rate delivery," Sensors, Vol. 21, 7415, 2021.
doi:10.3390/s21248350

17. Ali, S. A., M. Wajid, M. Usman, and M. S. Alam, "A high-order EMSIW MIMO antenna for space-constrained 5G smartphone," Sensors, Vol. 21, 8350, 2021.
doi:10.1049/iet-map.2017.0467

18. Jilani, S. F. and A. Alomainy, "Millimeter-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw., Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1080/09205071.2020.1865209

19. Gupta, A. and V. Kumar, "DGS-based wideband MIMO antenna for on-off body communication with port isolation enhancement operating at 2.45 GHz industrial scienti c and medical band," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 7, 888-901, 2021.
doi:10.1002/mop.31626

20. Madhav, B. T. P., Y. Usha Devi, and T. Anil Kumar, "Defected ground structured compact MIMO antenna with low mutual coupling for automotive communications," Microw. Opt. Technol. Lett., Vol. 61, No. 3, 794-800, 2019.
doi:10.3390/electronics9081265

21. Xing, H., X. Wang, Z. Gao, X. An, H. X. Zheng, M. Wang, and E. Li, "Efficient isolation of an MIMO antenna using defected ground structure," Electronics, Vol. 9, No. 8, 1265, 2020.
doi:10.1002/mmce.21799

22. Venkateswara Rao, M., B. T. P. Madhav, J. Krishna, Y. Usha Devi, T. Anil Kumar, and B. Prudhvi Nadh, "CSRR-loaded T-shaped MIMO antenna for 5G cellular networks and vehicular communications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 8, 21799, 2019.
doi:10.1109/TAP.2020.3035911

23. Qiu, H., H. Liu, X. Jia, Z. Y. Jiang, Y. H. Liu, J. Xu, T. Lu, M. Shao, T. L. Ren, and K. J. Chen, "Compact, flexible, and transparent antennas based on embedded metallic mesh for wearable devices in 5G wireless network," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1864-1873, 2020.
doi:10.3390/electronics10040405

24. Zahra, H., W. A. Awan, W. A. E. Ali, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, "A 28 GHz broadband helical inspired end-fire antenna and its MIMO con guration for 5G pattern diversity applications," Electronics, Vol. 10, No. 4, 405, 2021.
doi:10.3390/electronics9061031

25. Sehrai, D. A., M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glocks, and S. Rahman, "A novel high gain wideband MIMO antenna for 5G millimeter wave applications," Electronics, Vol. 9, No. 6, 1031, 2020.
doi:10.1109/LAWP.2017.2745050

26. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2763-2766, 2017.
doi:10.1016/j.aeue.2021.154071

27. Aghoutane, B., S. Das, M. E. Ghzaoui, B. T. P. Madhav, and H. El Faylali, "A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications," AEU --- Int. J. Electron. Commun., Vol. 145, 154071, 2022.
doi:10.2528/PIERL18070303

28. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "A 28-GHz antenna for 5G MIMO applications," Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018.
doi:10.3390/electronics9010071

29. Khalid, M., S. I. Naqvi, N. Hussain, M. U. Rahman, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics11040523

30. Hussain, M., E. Mousa Ali, S. M. R. Jarchavi, A. Zaidi, A. I. Najam, A. A. Alotaibi, A. Althobaiti, and S. S. M. Ghoneim, "Design and characterization of compact broadband antenna and its MIMO con guration for 28 GHz 5G applications," Electronics, Vol. 11, No. 4, 523, 2022.
doi:10.3390/electronics11060962

31. Bilal, M., S. I. Naqvi, N. Hussain, Y. Amin, and N. Kim, "High-isolation MIMO antenna for 5G millimeter-wave communication systems," Electronics, Vol. 11, 962, 2022.
doi:10.1038/s41598-020-65622-9

32. Ullah, S., W. H. Yeo, H. Kim, and H. Yoo, "Development of 60-GHz millimeter wave, electromagnetic bandgap ground planes for multiple-input multiple-output antenna applications," Sci. Rep., Vol. 10, 8541, 2020.
doi:10.2528/PIERB22052002

33. Kumar, A., A. Kumar, P. J. Soh, and A. Kumar, "Design consideration, challenges and measurement aspects of 5G mm-Wave antennas: A review," Progress In Electromagnetics Research B, Vol. 96, 39-66, 2022.