Vol. 117
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2024-01-31
Curvature-Based Feature Representation for Ship Detection in SAR Image
By
Progress In Electromagnetics Research Letters, Vol. 117, 55-59, 2024
Abstract
This article aims to exploit Ricci tensor with certain geometric properties which are used for feature representation and ship detection in synthetic aperture radar (SAR) image. The proposed method is composed of the following key points. Firstly, Riemannian metrics on the Gamma manifold are constructed based on the family of Gamma density functions. Secondly, direct calculation gives the Ricci tensor of Gamma manifold, where the curvature tensor resorts to the torsion-free affine connection. Thirdly, a general scheme for Zermelo navigation problem on the Riemannian manifold is addressed, and the solution of the navigation problem is proposed. Fourthly, feature representation problems are formulated as certain forms of Finsler metric of Randers type, indicating a joint framework for extracting low-dimensional features with closed-form solutions. Comprehensive experiments on real SAR image data sets demonstrate the effectiveness of the proposed method against compared state-of-the-art detection approaches.
Citation
Zhenyu Chen, and Meng Yang, "Curvature-Based Feature Representation for Ship Detection in SAR Image," Progress In Electromagnetics Research Letters, Vol. 117, 55-59, 2024.
doi:10.2528/PIERL23022704
References

1. Gao, Gui, Characterization of SAR Clutter and Its Applications to Land and Ocean Observations, Vol. 37, Springer, Singapore, 2019.
doi:10.1007/978-981-13-1020-1

2. Liu, Tao, Ziyuan Yang, Armando Marino, Gui Gao, and Jian Yang, "Robust CFAR detector based on truncated statistics for polarimetric synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 9, 6731-6747, 2020.

3. Wang, Xueqian, Gang Li, Xiao-Ping Zhang, and You He, "A fast CFAR algorithm based on density-censoring operation for ship detection in SAR images," IEEE Signal Processing Letters, Vol. 28, 1085-1089, 2021.
doi:10.1109/LSP.2021.3082034

4. Zefreh, Reza Ghaderi, Mohammad Reza Taban, Mohammad Mahdi Naghsh, and Saeed Gazor, "Robust CFAR detector based on censored harmonic averaging in heterogeneous clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 57, No. 3, 1956-1963, Jun. 2021.
doi:10.1109/TAES.2020.3046050

5. Ai, Jiaqiu, Yuxiang Mao, Qiwu Luo, Mengdao Xing, Kai Jiang, Lu Jia, and Xingming Yang, "Robust CFAR ship detector based on bilateral-trimmed-statistics of complex ocean scenes in SAR imagery: A closed-form solution," IEEE Transactions on Aerospace and Electronic Systems, Vol. 57, No. 3, 1872-1890, Jun. 2021.
doi:10.1109/TAES.2021.3050654

6. Li, Ming-Dian, Xing-Chao Cui, and Si-Wei Chen, "Adaptive superpixel-level CFAR detector for SAR inshore dense ship detection," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 4010405, 2022.
doi:10.1109/LGRS.2021.3059253

7. Ai, Jiaqiu, Zhilin Pei, Baidong Yao, Zhaocheng Wang, and Mengdao Xing, "AIS data aided Rayleigh CFAR ship detection algorithm of multiple-target environment in SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 2, 1266-1282, Apr. 2022.
doi:10.1109/TAES.2021.3111849

8. Li, Tao, Dongliang Peng, and Sainan Shi, "Outlier-robust superpixel-level CFAR detector with truncated clutter for single look complex SAR images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 5261-5274, Jun. 2022.
doi:10.1109/JSTARS.2022.3187516

9. Gao, Sheng and Hongli Liu, "Performance comparison of statistical models for characterizing sea clutter and ship CFAR detection in SAR images," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 7414-7430, 2022.
doi:10.1109/JSTARS.2022.3203230

10. Cui, Xing-Chao, Yi Su, and Si-Wei Chen, "A saliency detector for polarimetric SAR ship detection using similarity test," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 12, No. 9, 3423-3433, Sep. 2019.
doi:10.1109/JSTARS.2019.2925833

11. Xiong, Gang, Fang Wang, Liyang Zhu, Junye Li, and Wenxian Yu, "SAR target detection in complex scene based on 2-D singularity power spectrum analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 12, 9993-10003, Dec. 2019.
doi:10.1109/TGRS.2019.2930797

12. Lang, Haitao, Yuyang Xi, and Xi Zhang, "Ship detection in high-resolution SAR images by clustering spatially enhanced pixel descriptor," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 8, 5407-5423, Aug. 2019.
doi:10.1109/TGRS.2019.2899337

13. Wang, Xueqian, Gang Li, Xiao-Ping Zhang, and You He, "Ship detection in SAR images via local contrast of Fisher vectors," IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 9, 6467-6479, Sep. 2020.
doi:10.1109/TGRS.2020.2976880

14. Lin, Huiping, Hang Chen, Kan Jin, Liang Zeng, and Jian Yang, "Ship detection with superpixel-level Fisher vector in high-resolution SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 2, 247-251, Feb. 2020.
doi:10.1109/LGRS.2019.2920668

15. Wang, Xueqian, You He, Gang Li, and Antonio Plaza, "Adaptive superpixel segmentation of marine SAR images by aggregating Fisher vectors," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 2058-2069, 2021.
doi:10.1109/JSTARS.2021.3051301

16. Zhang, Tao, Wei Wang, Zhen Yang, Junjun Yin, and Jian Yang, "Ship detection from PolSAR imagery using the hybrid polarimetric covariance matrix," IEEE Geoscience and Remote Sensing Letters, Vol. 18, No. 9, 1575-1579, Sep. 2021.
doi:10.1109/LGRS.2020.3005683

17. Zhang, Panpan, Haibo Luo, Moran Ju, Miao He, Zheng Chang, and Bin Hui, "Brain-inspired fast saliency-based filtering algorithm for ship detection in high-resolution SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 5201709 2022.
doi:10.1109/TGRS.2021.3053257

18. Lv, Zongsen, Jing Lu, Qing Wang, Zhengwei Guo, and Ning Li, "ESP-LRSMD: A two-step detector for ship detection using SLC SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 5233516 2022.
doi:10.1109/TGRS.2022.3198940

19. Zhang, Chao, Chule Yang, Kaihui Cheng, Naiyang Guan, Hongbin Dong, and Baosong Deng, "MSIF: Multisize inference fusion-based false alarm elimination for ship detection in large-scale SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 5224811, 2022.

20. Wang, Xueqian, Gang Li, Antonio Plaza, and You He, "Revisiting SLIC: Fast superpixel segmentation of marine SAR images using density features," IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, 5221818, 2022.
doi:10.1109/TGRS.2022.3142068

21. Jiang, Mingzhe, David A. Clausi, and Linlin Xu, "Sea-ice mapping of RADARSAT-2 imagery by integrating spatial contexture with textural features," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 15, 7964-7977, 2022.
doi:10.1109/JSTARS.2022.3205849

22. Bao, David, S.-S. Chern, and Zhongmin Shen, An Introduction to Riemann-Finsler Geometry, Vol. 200, Springer, New York, 2000.
doi:10.1007/978-1-4612-1268-3

23. Shen, Yi-Bing and Zhongmin Shen, Introduction to Modern Finsler Geometry, Science Press, Beijing, 2013.

24. Forbes, Catherine, Merran Evans, Nicholas Hastings, and Brian Peacock, Statistical Distributions, John Wiley & Sons, New York, 2010.
doi:10.1002/9780470627242

25. Ji, Yonghyeok and Hyeongcheol Lee, "Event-based anomaly detection using a one-class SVM for a hybrid electric vehicle," IEEE Transactions on Vehicular Technology, Vol. 71, No. 6, 6032-6043, Jun. 2022.
doi:10.1109/TVT.2022.3165526

26. Sun, Xian, Zhirui Wang, Yuanrui Sun, Wenhui Diao, Yue Zhang, and Kun Fu, "AIR-SARShip-1.0: High-resolution SAR ship detection dataset," Journal of Radars, Vol. 8, No. 6, 852-862, 2019.

27. Yang, Meng and Chunsheng Guo, "Ship detection in SAR images based on lognormal ρ-metric," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 9, 1372-1376, Sep. 2018.
doi:10.1109/LGRS.2018.2838043

28. Yang, Meng, Dianqi Pei, Na Ying, and Chunsheng Guo, "An information-geometric optimization method for ship detection in SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 4005305, 2022.
doi:10.1109/LGRS.2020.3034940