Vol. 179
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2024-04-21
Theoretical Analysis on Generating Composite-Orbital Angular Momentum Beam
By
Progress In Electromagnetics Research, Vol. 179, 37-47, 2024
Abstract
For orbital angular momentum (OAM) based practical applications in radio frequency, inherent puzzles of traditional OAM carrying waves will be encountered inevitably, such as the inherent dark zone in the beam center and severe beam divergence. To solve the problem, some specific beams which are directional beams with high gain, and retain the vorticity and orthogonality of conventional OAM carrying beams have been put forward. They are termed as composite-orbital angular momentum (c-OAM) beam for the first time in this paper. Continuous arc source model (CASM) and discrete arc source model (DASM) are proposed to generate c-OAM beams which are composed of several OAM waves with different weights. Mathematical models of CASM and DASM are demonstrated, and the field expressions are derived. Numerical simulations are conducted to analyze the characteristics of the c-OAM beams, including directivity, vorticity, orthogonality, etc., and certify validity of the proposed model. In all, CASM and DASM are capable of generating c-OAM beams which are more suitable for OAM property based practical applications. Since beamforming is one of the key technologies in 5G systems, c-OAM beams are beneficial to be applied in current communication systems.
Citation
Zhixia Wang, Zelin Zhu, Shilie Zheng, Xiaonan Hui, and Xianmin Zhang, "Theoretical Analysis on Generating Composite-Orbital Angular Momentum Beam," Progress In Electromagnetics Research, Vol. 179, 37-47, 2024.
doi:10.2528/PIER23022306
References

1. Gesbert, D., M. Shafi, Da-Shan Shiu, P. J. Smith, and A. Naguib, "From theory to practice: An overview of MIMO space-time coded wireless systems," IEEE Journal on Selected Areas in Communications, Vol. 21, No. 3, 281-302, Apr. 2003.
doi:10.1109/JSAC.2003.809458

2. Vook, Frederick W., Amitava Ghosh, and Timothy A. Thomas, "MIMO and beamforming solutions for 5G technology," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-4, Tampa, FL, USA, Jun. 2014.

3. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185, Jun. 1992.
doi:10.1103/PhysRevA.45.8185

4. Fürhapter, Severin, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Optics Express, Vol. 13, No. 3, 689-694, Feb. 2005.
doi:10.1364/OPEX.13.000689

5. Huang, Hao, Guodong Xie, Yan Yan, Nisar Ahmed, Yongxiong Ren, Yang Yue, Dvora Rogawski, Moshe J. Willner, Baris I. Erkmen, Kevin M. Birnbaum, Samuel J. Dolinar, Martin P. J. Lavery, Miles J. Padgett, Moshe Tur, and Alan E. Willner, "100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength," Optics Letters, Vol. 39, No. 3, 197-200, Jan. 2014.
doi:10.1364/OL.39.000197

6. Yan, Yan, Guodong Xie, Martin P. J. Lavery, Hao Huang, Nisar Ahmed, Changjing Bao, Yongxiong Ren, Yinwen Cao, Long Li, Zhe Zhao, Andreas F. Molisch, Moshe Tur, Miles J. Padgett, and Alan E. Willner, "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nature Communications, Vol. 5, No. 1, 4876, Sep. 2014.
doi:10.1038/ncomms5876

7. Zhang, Weite, Shilie Zheng, Xiaonan Hui, Ruofan Dong, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Mode division multiplexing communication using microwave orbital angular momentum: An experimental study," IEEE Transactions on Wireless Communications, Vol. 16, No. 2, 1308-1318, Feb. 2017.
doi:10.1109/TWC.2016.2645199

8. Thidé, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, Aug. 2007.
doi:10.1103/PhysRevLett.99.087701

9. Tamburini, Fabrizio, Elettra Mari, Anna Sponselli, Bo Thidé, Antonio Bianchini, and Filippo Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 3, 033001, Mar. 2012.
doi:10.1088/1367-2630/14/3/033001

10. Zhang, Weite, Shilie Zheng, Yiling Chen, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Orbital angular momentum-based communications with partial arc sampling receiving," IEEE Communications Letters, Vol. 20, No. 7, 1381-1384, Jul. 2016.
doi:10.1109/LCOMM.2016.2560166

11. Zhang, Zhuofan, Shilie Zheng, Jiayu Zheng, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Plane spiral orbital angular momentum wave and its applications," 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4, San Francisco, CA, USA, May 2016.

12. Yao, Eric, Sonja Franke-Arnold, Johannes Courtial, Stephen Barnett, and Miles Padgett, "Fourier relationship between angular position and optical orbital angular momentum," Optics Express, Vol. 14, No. 20, 9071-9076, Oct. 2006.
doi:10.1364/OE.14.009071

13. Jack, B., M. J. Padgett, and S. Franke-Arnold, "Angular diffraction," New Journal of Physics, Vol. 10, 103013-103021, Oct. 2008.
doi:10.1088/1367-2630/10/10/103013

14. Wang, Zhixia, Shilie Zheng, Xiaowen Xiong, Zelin Zhu, Yuqi Chen, Xianbin Yu, Xiaofeng Jin, and Xianmin Zhang, "Structure radio beam construction in azimuthal domain," IEEE Access, Vol. 8, 9395-9402, 2020.
doi:10.1109/ACCESS.2020.2964833

15. Zheng, Shilie, Yiling Chen, Zhuofan Zhang, Xiaofeng Jin, Hao Chi, Xianmin Zhang, and Zhi Ning Chen, "Realization of beam steering based on plane spiral orbital angular momentum wave," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1352-1358, Mar. 2018.
doi:10.1109/TAP.2017.2786297

16. Wang, Xinyue, Shilie Zheng, Xianbin Yu, Xiaofeng Jin, and Xianmin Zhang, "A compact PSOAM antenna based on substrate integrated waveguide," Journal of Communications and Information Networks, Vol. 4, No. 3, 18-24, 2019.

17. Zhu, Zelin, Shilie Zheng, Xiaowen Xiong, Yuqi Chen, Xiaofeng Jin, Xianbin Yu, and Xianmin Zhang, "A compact pattern reconfiguration antenna based on multimode plane spiral OAM," New Journal of Physics, Vol. 6, No. 9, 1168-1172, 2021.
doi:10.1109/TAP.2021.3073801

18. Fouda, Reham M., Thomas C. Baum, and Kamran Ghorbani, "Quasi-orbital angular momentum (Q-OAM) generated by quasi-circular array antenna (QCA)," Scientific Reports, Vol. 8, No. 1, 8363, May 2018.
doi:10.1038/s41598-018-26733-6

19. Xiong, Xiaowen, Shilie Zheng, Zelin Zhu, Zhixia Wang, Yuqi Chen, Xianbin Yu, and Xianmin Zhang, "Direct generation of OAM mode-group and its application in LoS-MIMO system," IEEE Communications Letters, Vol. 24, No. 11, 2628-2631, Nov. 2020.
doi:10.1109/LCOMM.2020.3009759

20. Zheng, Shilie, Xiaonan Hui, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1530-1536, Apr. 2015.
doi:10.1109/TAP.2015.2393885

21. Liu, Kang, Yongqiang Cheng, Yue Gao, Xiang Li, Yuliang Qin, and Hongqiang Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, Apr. 2017.
doi:10.1063/1.4981253

22. Lavery, Martin P. J., Fiona C. Speirits, Stephen M. Barnett, and Miles J. Padgett, "Detection of a spinning object using light's orbital angular momentum," Science, Vol. 341, No. 6145, 537-540, Aug. 2013.
doi:10.1126/science.1239936

23. Zhu, Zelin, Shilie Zheng, Xiaowen Xiong, Yuqi Chen, Xiaonan Hui, Xiaofeng Jin, Xianbin Yu, and Xianmin Zhang, "A non-uniform travelling-wave current source model for designing OAM antenna: Theory, analysis and application," IEEE Access, Vol. 10, 47499-47508, 2022.
doi:10.1109/ACCESS.2022.3170713

24. Carozzi, T., R. Karlsson, and J. Bergman, "Parameters characterizing electromagnetic wave polarization," Physical Review E, Vol. 61, No. 2, 2024, 2000.
doi:10.1103/PhysRevE.61.2024