1. Ziolkowski, R. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, Jul. 2006.
doi:10.1109/TAP.2006.877179
2. Ma, X., C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, "A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2307-2311, Apr. 2014.
doi:10.1109/TAP.2014.2301841
3. Zhang, N., W. X. Jiang, H. F. Ma, W. X. Tang, and T. J. Cui, "Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 1323-1328, Feb. 2019.
doi:10.1109/TAP.2018.2880115
4. Zhang, S., R. Arya, W. Whittow, D. Cadman, R. Mittra, and J. Vardaxoglou, "Ultra-wideband at metamaterial GRIN lenses assisted with additive manufacturing technique," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3788-3799, Jul. 2021.
doi:10.1109/TAP.2020.3044586
5. Kuester, E., M. Mohamed, M. Piketmay, and C. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2641-2651, Oct. 2003.
doi:10.1109/TAP.2003.817560
6. Holloway, C., M. Mohamed, E. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metalm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 853-865, Nov. 2005.
7. Holloway, C., A. Dienstfrey, E. Kuester, J. O'Hara, A. Azad, and A. Taylor, "A discussion on the interpretation and characterization of metalms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, No. 2, 100-112, Oct. 2009.
doi:10.1016/j.metmat.2009.08.001
8. Holloway, C., E. Kuester, and A. Dienstfrey, "Characterizing metasurfaces/metalms: The connection between surface susceptibilities and effective material properties," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1507-1511, 2011.
doi:10.1109/LAWP.2011.2182591
9. Mehdipour, A., J. Wong, and G. Eleftheriades, "Beam-squinting reduction of leaky-wave antennas using Huygens metasurfaces," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 978-992, Mar. 2015.
doi:10.1109/TAP.2015.2389240
10. Vallecchi, A., J. Luis, F. Capolino, and F. Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 51-62, Jan. 2012.
doi:10.1109/TAP.2011.2167912
11. Vellucci, S., A. Monti, M. Barbuto, G. Oliveri, et al. "On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 5048-5053, Aug. 2021.
doi:10.1109/TAP.2021.3061010
12. Yang, W., S. Chen, W. Che, Q. Xue, and Q. Meng, "Compact high-gain metasurface antenna arrays based on higher-mode SIW cavities," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4918-4923, Sep. 2018.
doi:10.1109/TAP.2018.2851659
13. Gu, L., W. Yang, Q. Xue, and W. Che, "A dual-band steerable dual-beam metasurface antenna based on common feeding network," IEEE Trans. Antennas Propag., Vol. 69, No. 10, 6340-6350, Oct. 2021.
doi:10.1109/TAP.2021.3069482
14. Herruzo, J., M. Rocher, A. Nogueira, and B. Clemente, "Novel asymmetric T-shaped radiating element for circularly-polarized waveguide slot arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7452-7461, Nov. 2021.
doi:10.1109/TAP.2021.3076277
15. Wu, X., F. Yang, F. Xu, and J. Zhou, "Circularly polarized waveguide antenna with dual pairs of radiation slots at Ka-band," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2947-2950, Sep. 2017.
doi:10.1109/LAWP.2017.2755022
16. Liu, Y., X Liang, X. Zhang, et al. "A K-band broadband circularly polarized slot antenna based on L-shaped waveguide cavity," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 9, 1606-1610, Sep. 2021.
doi:10.1109/LAWP.2021.3090793
17. Li, T., H. Meng, and W. Dou, "Design and implementation of dual-frequency dual-polarization slotted waveguide antenna array for Ka-band application," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1317-1320, Jul. 2014.
18. Chen, M., X. Fang, W. Wang, H. Zhang, and G. Huang, "Dual-band dual-polarized waveguide slot antenna for SAR applications," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 10, 1719-1723, Oct. 2020.
doi:10.1109/LAWP.2020.3014878
19. Chen, J., T. Hu, Y. Zhao, L. Li, et al. "Realization of the high-gain low-sidelobe wide-sector beam using inductive diaphragms loaded slotted ridge waveguide antenna array for air detection applications," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2698-2707, Apr. 2022.
doi:10.1109/TAP.2021.3118780
20. Wu, M., B. Zhang, Y. Zhou, and K. Huang, "A double-fold 7 x 8 butler matrixfed multibeam antenna with a boresight beam for 5G applications," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 3, 516-520, Mar. 2022.
doi:10.1109/LAWP.2021.3136913
21. Liu, J. and B. Zhang, "A modularized interchangeable multibeam slot array antenna using hybrid substrates for mass production," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 5, 723-727, May 2021.
doi:10.1109/LAWP.2021.3061427
22. Cheng, Y. and Y. Dong, "A shared-aperture dual-band high-efficiency antenna based on groove gap waveguide," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 8, 1620-1624, Aug. 2022.
doi:10.1109/LAWP.2022.3175744
23. Wu, Y., Z. Hao, Z. Miao, W. Hong, and J. Hong, "A 140 GHz high-efficiency slotted waveguide antenna using a low-loss feeding network," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 94-98, Jan. 2020.
doi:10.1109/LAWP.2019.2954138
24. Herruzo, J., A. Nogueira, M. Rocher, and B. Clemente, "High-efficiency Ka-band circularly polarized radial-line slot array antenna on a bed of nails," IEEE Trans. Antennas Propag., Vol. 70, No. 5, 3343-3353, May 2022.
doi:10.1109/TAP.2021.3137376
25. Kim, D., Y. Lim, H. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1854-1857, Apr. 2015.
doi:10.1109/TAP.2015.2398129
26. Xu, X., M. Zhang, J. Hirokawa, and M. Ando, "E-band plate-laminated waveguide lters and their integration into a corporate-feed slot array antenna with diffusion bonding technology," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 11, 3592-3603, Nov. 2016.
doi:10.1109/TMTT.2016.2602859
27. Lu, J., H. Zhang, W. Wang, et al. "Broadband dual-polarized waveguide slot ltenna array with low cross polarization and high efficiency," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 151-159, Jan. 2019.
doi:10.1109/TAP.2018.2876174
28. Yuan, W., X. Liang, L. Zhang, J. Geng, W. Zhu, and R. Jin, "Rectangular grating waveguide slot array antenna for SATCOM applications," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 3869-3880, Jun. 2019.
doi:10.1109/TAP.2019.2905784
29. Wang, W., Z. Zheng, X. Fang, et al. "A waveguide slot filtering antenna with an embedded metamaterial structure," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 2953-2960, May 2019.
doi:10.1109/TAP.2019.2898989
30. Zheng, Z., X. Fang, W. Wang, G. Huang, H. Zhang, and X. Liang, "A compact waveguide slot filtering antenna based on mushroom-type surface," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 10, 1823-1827, Oct. 2020.
doi:10.1109/LAWP.2020.3020539