Vol. 100
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-04-15
A Metallic 3D Printed Modularized Dual-Stopband AMC-Loaded Waveguide Slot Filtering Antenna
By
Progress In Electromagnetics Research B, Vol. 100, 19-38, 2023
Abstract
A 3D printing and printed circuit board (PCB) hybrid fabricated modularized dual-stopband artificial magnetic conductor (AMC)-loaded filtering antenna is proposed for an X-band high-power radar system.By loading low-cost microstrip AMCs of different frequency responses into a waveguide slot array, we achieve a modularized filtering antenna whose frequency response can be simply controlled by replacing different AMCs. The waveguide slot array only works as a fixture to host different AMCs to achieve various filtering antenna frequency responses. The interchangeable modularized design helps to reduce the difficulty and cost of component fabrication by eliminating the need for complex resonant cavities inside the waveguide filtering antenna, which is time-efficient at the stage of product prototyping when numerous iterations are needed on a trial-and-error base. A dual-stopband filtering antenna is designed and fabricated in the X-band to verify the design concept. The passband covers 9.25-10.6 GHz with the passband gain greater than 10 dBi. The antenna radiates frequency-dependent scanning beams in the passband. The stopbands are 8.1-9 GHz and 10.75-11.5 GHz, and the out-of-band rejection is larger than 35 dB. The proposed design concept provides a different thought to achieve a low-cost filtering antenna by using interchangeable modularized components. The fabricated antenna prototype is a capable candidate for high-power airborne radar applications.
Citation
Xingyu Cui, and Bing Zhang, "A Metallic 3D Printed Modularized Dual-Stopband AMC-Loaded Waveguide Slot Filtering Antenna," Progress In Electromagnetics Research B, Vol. 100, 19-38, 2023.
doi:10.2528/PIERB23020601
References

1. Ziolkowski, R. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, Jul. 2006.
doi:10.1109/TAP.2006.877179

2. Ma, X., C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, "A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2307-2311, Apr. 2014.
doi:10.1109/TAP.2014.2301841

3. Zhang, N., W. X. Jiang, H. F. Ma, W. X. Tang, and T. J. Cui, "Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 1323-1328, Feb. 2019.
doi:10.1109/TAP.2018.2880115

4. Zhang, S., R. Arya, W. Whittow, D. Cadman, R. Mittra, and J. Vardaxoglou, "Ultra-wideband at metamaterial GRIN lenses assisted with additive manufacturing technique," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3788-3799, Jul. 2021.
doi:10.1109/TAP.2020.3044586

5. Kuester, E., M. Mohamed, M. Piketmay, and C. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2641-2651, Oct. 2003.
doi:10.1109/TAP.2003.817560

6. Holloway, C., M. Mohamed, E. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a meta lm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 853-865, Nov. 2005.

7. Holloway, C., A. Dienstfrey, E. Kuester, J. O'Hara, A. Azad, and A. Taylor, "A discussion on the interpretation and characterization of meta lms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, No. 2, 100-112, Oct. 2009.
doi:10.1016/j.metmat.2009.08.001

8. Holloway, C., E. Kuester, and A. Dienstfrey, "Characterizing metasurfaces/meta lms: The connection between surface susceptibilities and effective material properties," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1507-1511, 2011.
doi:10.1109/LAWP.2011.2182591

9. Mehdipour, A., J. Wong, and G. Eleftheriades, "Beam-squinting reduction of leaky-wave antennas using Huygens metasurfaces," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 978-992, Mar. 2015.
doi:10.1109/TAP.2015.2389240

10. Vallecchi, A., J. Luis, F. Capolino, and F. Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 51-62, Jan. 2012.
doi:10.1109/TAP.2011.2167912

11. Vellucci, S., A. Monti, M. Barbuto, G. Oliveri, et al. "On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 5048-5053, Aug. 2021.
doi:10.1109/TAP.2021.3061010

12. Yang, W., S. Chen, W. Che, Q. Xue, and Q. Meng, "Compact high-gain metasurface antenna arrays based on higher-mode SIW cavities," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4918-4923, Sep. 2018.
doi:10.1109/TAP.2018.2851659

13. Gu, L., W. Yang, Q. Xue, and W. Che, "A dual-band steerable dual-beam metasurface antenna based on common feeding network," IEEE Trans. Antennas Propag., Vol. 69, No. 10, 6340-6350, Oct. 2021.
doi:10.1109/TAP.2021.3069482

14. Herruzo, J., M. Rocher, A. Nogueira, and B. Clemente, "Novel asymmetric T-shaped radiating element for circularly-polarized waveguide slot arrays," IEEE Trans. Antennas Propag., Vol. 69, No. 11, 7452-7461, Nov. 2021.
doi:10.1109/TAP.2021.3076277

15. Wu, X., F. Yang, F. Xu, and J. Zhou, "Circularly polarized waveguide antenna with dual pairs of radiation slots at Ka-band," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2947-2950, Sep. 2017.
doi:10.1109/LAWP.2017.2755022

16. Liu, Y., X Liang, X. Zhang, et al. "A K-band broadband circularly polarized slot antenna based on L-shaped waveguide cavity," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 9, 1606-1610, Sep. 2021.
doi:10.1109/LAWP.2021.3090793

17. Li, T., H. Meng, and W. Dou, "Design and implementation of dual-frequency dual-polarization slotted waveguide antenna array for Ka-band application," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1317-1320, Jul. 2014.

18. Chen, M., X. Fang, W. Wang, H. Zhang, and G. Huang, "Dual-band dual-polarized waveguide slot antenna for SAR applications," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 10, 1719-1723, Oct. 2020.
doi:10.1109/LAWP.2020.3014878

19. Chen, J., T. Hu, Y. Zhao, L. Li, et al. "Realization of the high-gain low-sidelobe wide-sector beam using inductive diaphragms loaded slotted ridge waveguide antenna array for air detection applications," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2698-2707, Apr. 2022.
doi:10.1109/TAP.2021.3118780

20. Wu, M., B. Zhang, Y. Zhou, and K. Huang, "A double-fold 7 x 8 butler matrixfed multibeam antenna with a boresight beam for 5G applications," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 3, 516-520, Mar. 2022.
doi:10.1109/LAWP.2021.3136913

21. Liu, J. and B. Zhang, "A modularized interchangeable multibeam slot array antenna using hybrid substrates for mass production," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 5, 723-727, May 2021.
doi:10.1109/LAWP.2021.3061427

22. Cheng, Y. and Y. Dong, "A shared-aperture dual-band high-efficiency antenna based on groove gap waveguide," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 8, 1620-1624, Aug. 2022.
doi:10.1109/LAWP.2022.3175744

23. Wu, Y., Z. Hao, Z. Miao, W. Hong, and J. Hong, "A 140 GHz high-efficiency slotted waveguide antenna using a low-loss feeding network," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 94-98, Jan. 2020.
doi:10.1109/LAWP.2019.2954138

24. Herruzo, J., A. Nogueira, M. Rocher, and B. Clemente, "High-efficiency Ka-band circularly polarized radial-line slot array antenna on a bed of nails," IEEE Trans. Antennas Propag., Vol. 70, No. 5, 3343-3353, May 2022.
doi:10.1109/TAP.2021.3137376

25. Kim, D., Y. Lim, H. Yoon, and S. Nam, "High-efficiency W-band electroforming slot array antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1854-1857, Apr. 2015.
doi:10.1109/TAP.2015.2398129

26. Xu, X., M. Zhang, J. Hirokawa, and M. Ando, "E-band plate-laminated waveguide lters and their integration into a corporate-feed slot array antenna with diffusion bonding technology," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 11, 3592-3603, Nov. 2016.
doi:10.1109/TMTT.2016.2602859

27. Lu, J., H. Zhang, W. Wang, et al. "Broadband dual-polarized waveguide slot ltenna array with low cross polarization and high efficiency," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 151-159, Jan. 2019.
doi:10.1109/TAP.2018.2876174

28. Yuan, W., X. Liang, L. Zhang, J. Geng, W. Zhu, and R. Jin, "Rectangular grating waveguide slot array antenna for SATCOM applications," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 3869-3880, Jun. 2019.
doi:10.1109/TAP.2019.2905784

29. Wang, W., Z. Zheng, X. Fang, et al. "A waveguide slot filtering antenna with an embedded metamaterial structure," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 2953-2960, May 2019.
doi:10.1109/TAP.2019.2898989

30. Zheng, Z., X. Fang, W. Wang, G. Huang, H. Zhang, and X. Liang, "A compact waveguide slot filtering antenna based on mushroom-type surface," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 10, 1823-1827, Oct. 2020.
doi:10.1109/LAWP.2020.3020539