Vol. 177
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-07-03
Transverse Orbital Angular Momentum of Spatiotemporal Optical Vortices
By
Progress In Electromagnetics Research, Vol. 177, 95-105, 2023
Abstract
Spatiotemporal optical vortices (STOVs) are electromagnetic wave packets that transport a phase line singularity perpendicular to their propagation direction. We address the problem of the transverse orbital angular momentum (OAM) actually transported by STOVs propagating in free space or non-dispersive media, the most frequent experimental situation. An elliptically symmetric STOV of topological charge l and carrier frequency ω0 carries an intrinsic transverse OAM per unit energy γl/2ω0, where γ is the STOV ellipticity. Intrinsic stands for the OAM about a moving transverse axis passing permanently through the STOV center. For circular STOVs (γ = 1) this value is half the intrinsic longitudinal OAM of monochromatic light beams of the same charge and frequency. This result agrees with that in Phys. Rev. Lett. 127, 193901 (2021). The formula (γ+1/γ)l/2ω0 for the intrinsic transverse OAM in Phys. Rev. A 107, L031501 (2023) yields infinite values and is not conserved on propagation for particular STOVs. When STOVs propagate losing their elliptical symmetry, they preserve the intrinsic transverse OAM γl/2ω0 despite the phase singularity may split, the split singularities may disappear, or even change the sign of their topological charges. The total transverse OAM of a STOV about a fixed transverse axis crossing its center vanishes because the extrinsic transverse OAM is opposite to the intrinsic OAM, which may preclude applications such as setting particles into rotation, but STOVs could transmit their intrinsic OAM to the photons of other waves, as in nonlinear frequency conversion processes.
Citation
Miguel Angel Porras, "Transverse Orbital Angular Momentum of Spatiotemporal Optical Vortices," Progress In Electromagnetics Research, Vol. 177, 95-105, 2023.
doi:10.2528/PIER23012203
References

1. Shen, Y., X. Wang, Z. Xie, C. Min, X Fu, Q. Liu, M. Gong, and X. Yuan, "Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities," Light Sci. Appl., Vol. 8, 90, 2019.
doi:10.1038/s41377-019-0194-2

2. Jhajj, N., I. Larkin, E. W. Rosenthal, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, "Spatiotemporal optical vortices," Phys. Rev. X, Vol. 6, 031037, 2016.

3. Hancock, S. W., S. Zahedpour, A. Goffin, and H. M. Milchberg, "Free-space propagation of spatiotemporal optical vortices," Optica, Vol. 6, 1547, 2019.
doi:10.1364/OPTICA.6.001547

4. Chong, A., C. Wan, J. Chen, and Q. Zhan, "Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum," Nat. Photonics, Vol. 14, 350, 2020.
doi:10.1038/s41566-020-0587-z

5. Wang, H., C. Guo, W. Jein, A. Y. Song, and S. Fan, "Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines," Optica, Vol. 8, 2334-2536, 2021.

6. Chen, J., C. Wan, A. Chong, and Z. Zhan, "Experimental demonstration of cylindrical vector spatiotemporal optical vortex," Nanophotonics, Vol. 10, 4489-4495, 2021.
doi:10.1515/nanoph-2021-0427

7. Cao, Q., J. Chen, K. Lu, C. Wan, A. Chong, and Q. Zhan, "Non-spreading Bessel spatiotemporal optical vortices," Science Bulletin, Vol. 67, 133-140, 2022.
doi:10.1016/j.scib.2021.07.031

8. Hancock, S. W., S. Zahedpour, and H. M. Milchberg, "Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses," Phys. Rev. Lett., Vol. 127, 193901, 2021.
doi:10.1103/PhysRevLett.127.193901

9. Huang, S., P. Wang, X. Shen, and J. Liu, "Properties of the generation and propagation of spatiotemporal optical vortices," Opt. Express, Vol. 29, 26995, 2021.
doi:10.1364/OE.434845

10. Huang, S., P. Wang, X. Shen, J. Liu, and R. Li, "Diffraction properties of light with transverse orbital angular momentum," Optica, Vol. 9, 469, 2022.
doi:10.1364/OPTICA.449108

11. Porras, M. A., "Propagation of higher-order spatiotemporal vortices," Opt. Lett., Vol. 48, 367-370, 2023.
doi:10.1364/OL.479566

12. Bliokh, K. Y. and F. Nori, "Spatiotemporal vortex beams and angular momentum," Phys. Rev. A, Vol. 86, 033824, 2012.
doi:10.1103/PhysRevA.86.033824

13. Bliokh, K. Y., "Spatiotemporal vortex pulses: Angular momenta and spin orbit interaction," Phys. Rev. Lett., Vol. 126, 243601, 2021.
doi:10.1103/PhysRevLett.126.243601

14. Shen, Y., Q. Zhan, L. G. Wright, D. N. Christodoulides, F. W. Wise, A. E. Willner, Z. Zhao, K. Zou, C. Liao, C. Hernandez-Garcia, M. Murnane, M. A. Porras, A. Chong, C. Wan, K. Y. Bliokh, M. Yessenov, A. F. Abouraddy, L. J. Wong, M. Go, S. Kumar, C. Guo, S. Fan, N. Papasimakis, N. I. Zheludev, L. Chen, W. Zhu, A. Agrawal, S. W. Jolly, C. Dorrer, B. Alonso, I. Lopez-Quintas, M. Lopez-Ripa, I. J. Sola, Y. Fang, Q. Gong, Y. Liu, J. Huang, H. Zhang, Z. Ruan, M. Mounaix, N. K. Fontaine, J. Carpenter, A. H. Dorrah, F. Capasso, and A. Forbes, "Roadmap on spatiotemporal light fields," arXiv.2210.11273, 2022.

15. Hancock, S. W., S. Zahedpour, and H. M. Milchberg, "Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum," Optica, Vol. 8, 594-597, 2021.
doi:10.1364/OPTICA.422743

16. Gui, G., N. J. Brooks, H. C. Kapteyn, M. M. Murnane, and C.-T. Liao, "Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum," Nature Photonics, Vol. 15, 608-613, 2021.
doi:10.1038/s41566-021-00841-8

17. Fang, Y., S. Lu, and Y. Liu, "Controlling photon transverse orbital angular momentum in high harmonic generation," Phys. Rev. Lett., Vol. 127, 273901, 2021.
doi:10.1103/PhysRevLett.127.273901

18. Mazanov, M., D. Sugic, M. A. Alonso, F. Nori, and K. Y. Bliokh, "Transverse shifts and time delays of spatiotemporal vortex pulses reflected and refracted at a planar interface," Nanophotonics, Vol. 11, 737-744, 2022.
doi:10.1515/nanoph-2021-0294

19. Porras, M. A., "Spatiotemporal optical vortex solitons: Dark solitons with transverse and tilted phase line singularities," Phys. Rev. A, Vol. 104, L061502, 2021.
doi:10.1103/PhysRevA.104.L061502

20. Barnett, S. M., "Optical angular-momentum flux," J. Opt. B: Quantu., Semiclass. Opt., Vol. 4, S7-S16, 2002.
doi:10.1088/1464-4266/4/2/361

21. Heyman, E., "Pulsed beam propagation in an inhomogeneous medium," IEEE Trans. Antennas Propag., Vol. 42, 311-319, 1994.
doi:10.1109/8.280715

22. Besieris, I. M. and A. M. Shaarawi, "Paraxial localized waves in free space," Opt. Express, Vol. 12, 3848-3864, 2004.
doi:10.1364/OPEX.12.003848

23. Lax, M., W. H. Louisell, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. Rev. A, Vol. 11, 1365, 1975.
doi:10.1103/PhysRevA.11.1365

24. Ruiz-Jimenez, C., H. Leblond, M. A. Porras, and B. A. Malomed, "Rotating azimuthons in dissipative Kerr media excited by superpositions of Bessel beams," Phys. Rev. A, Vol. 102, 063502, 2020.
doi:10.1103/PhysRevA.102.063502

25. Molina-Terriza, G., J. Recolons, J. P. Torres, and L. Torner, "Observation of the dynamical inversion of the topological charge of an optical vortex," Phys. Rev. Lett., Vol. 87, 023902, 2001.
doi:10.1103/PhysRevLett.87.023902

26. Bliokh, K. Y., "Orbital angular momentum of optical, acoustic, and quantum-mechanical spatiotemporal vortex pulses," Phys. Rev. A, Vol. 107, L031501, 2023.
doi:10.1103/PhysRevA.107.L031501

27. Bialynicki-Birula, I., "Photon wave function," Progress in Optics, Vol. 36, 245-294, 1996.
doi:10.1016/S0079-6638(08)70316-0

28. Dror, N. and B. A. Malomed, "Symmetric and asymmetric solitons and vortices in linearly coupled two-dimensional waveguides with the cubic-quintic nonlinearity," Physica D, Vol. 240, 526-541, 2011.
doi:10.1016/j.physd.2010.11.001