1. Bowell, R. A., M. J. Brandsema, B. M. Ahmed, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Electric field correlations in quantum radar and the quantum advantage," Proc. SPIE Conference on Radar Sensor Technology XXIV, On-line, Vol. 11408, Apr. 2020.
2. Brandsema, M. J., R. M. Narayanan, and M. Lanzagorta, "Correlation properties of single photon binary waveforms used in quantum radar/lidar," Proc. SPIE Conference on Radar Sensor Technology XXIV, On-line, Vol. 11408, Apr. 2020.
3. Chang, C. W. S., A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, "Quantum-enhanced noise radar," Applied Physics Letters, Vol. 114, No. 11, 112601, Mar. 2019.
doi:10.1063/1.5085002
4. Lanzagorta, M., Quantum Radar, Morgan & Claypool, 2011.
5. Guha, S. and B. I. Erkmen, "Gaussian-state quantum illumination receivers for target detection," Physical Review A, Vol. 80, No. 5, 052310, Nov. 2009.
doi:10.1103/PhysRevA.80.052310
6. Shapiro, J. H., "The quantum illumination story," IEEE Aerospace and Electronic Systems Magazine, Vol. 35, No. 4, 8-20, Apr. 2020.
doi:10.1109/MAES.2019.2957870
7. Lanzagorta, M., "Low-brightness quantum radar," Proc. SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Vol. 9461, Baltimore, MD, Apr. 2015.
8. Luong, D., C. S. Chang, A. Vadiraj, A. Damini, C. Wilson, and B. Balaji, "Receiver operating characteristics for a prototype quantum two-mode squeezing radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 3, 2041-2060, Jun. 2020.
doi:10.1109/TAES.2019.2951213
9. Lopaeva, E. D., I. Ruo Berchera, I. Degiovanni, S. Olivares, G. Brida, and M. Genovese, "Experimental realization of quantum illumination," Physical Review Letters, Vol. 110, No. 15, 153603, Apr. 2013.
doi:10.1103/PhysRevLett.110.153603
10. Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, "Microwave quantum illumination," Physical Review Letters, Vol. 114, No. 8, 080503, Feb. 2015.
doi:10.1103/PhysRevLett.114.080503
11. Zhang, Z., S. Mouradian, F. N. Wong, and J. H. Shapiro, "Entanglement-enhanced sensing in a lossy and noisy environment," Physical Review Letters, Vol. 114, No. 11, 110506, Mar. 2015.
doi:10.1103/PhysRevLett.114.110506
12. Luong, D., S. Rajan, and B. Balaji, "Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection," IEEE Sensors Journal, Vol. 20, No. 10, 5221-5228, May 2020.
doi:10.1109/JSEN.2020.2971851
13. Luong, D., B. Balaji, and S. Rajan, "Biomedical sensing using quantum radars based on Josephson parametric amplifiers," Proc. 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Aug. 2021.
14. Liu, H., B. Balaji, and A. S. Helmy, "Target detection aided by quantum temporal correlations: Theoretical analysis and experimental validation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, 3529-3544, Oct. 2020.
doi:10.1109/TAES.2020.2974054
15. Yang, H., W. Roga, J. D. Pritchard, and J. Jeffers, "Gaussian state-based quantum illumination with simple photodetection," Optics Express, Vol. 29, No. 6, 8199-8215, Mar. 2021.
doi:10.1364/OE.416151
16. England, D. G., B. Balaji, and B. J. Sussman, "Quantum-enhanced standoff detection using correlated photon pairs," Physical Review A, Vol. 99, 023828, Feb. 2019.
doi:10.1103/PhysRevA.99.023828
17. Guha, S., "Receiver design to harness the quantum illumination advantage," Proc. 2009 IEEE International Symposium on Information Theory (ISIT), 963-967, Seoul, Korea, Jun.-Jul. 2009.
18. Zhuang, Q. and J. H. Shapiro, "Ultimate accuracy limit of quantum pulse-compression ranging,", arXiv:2109.11079v1, Sep. 2021.
19. Blakely, J. N., "Bounds on probability of detection error in quantum-enhanced noise radar," Quantum Reports, Vol. 2, No. 3, 400-413, Jul. 2020.
doi:10.3390/quantum2030028
20. Tan, S.-H., B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, "Quantum illumination with Gaussian states," Physical Review Letters, Vol. 101, No. 25, 253601, Dec. 2008.
doi:10.1103/PhysRevLett.101.253601
21. Dawood, M. and R. M. Narayanan, "Receiver operating characteristics for the coherent UWB random noise radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 2, 586-594, Apr. 2001.
doi:10.1109/7.937470
22. Russer, J. A., M. Wurth, W. Utschick, F. Bischeltsrieder, and M. Peichl, "Performance considerations for quantum radar," Proc. 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Aug. 2021.
23. Bowell, R. A., M. J. Brandsema, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Tripartite correlation performance for use in quantum radar systems," Proc. SPIE Conference on Radar Sensor Technology XV, On-line, Vol. 11742, Apr. 2021.
24. Bowell, R. A., M. J. Brandsema, R. M. Narayanan, S. W. Howell, and J. M. Dilger, "Comparison of correlation performance for various measurement schemes in quantum bipartite radar and communication systems," Progress In Electromagnetics Research, Vol. 174, 43-53, 2022.
doi:10.2528/PIER22022506
25. Zhang, W. and R. T. Glasser, "Coupled three-mode squeezed vacuum,", arXiv:2002.00323v1, 2020.
26. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997.
doi:10.1017/CBO9780511813993
27. Vourdas, A., "Optical signals with thermal noise," Physical Review A, Vol. 39, No. 1, 206-213, Jan. 1989.
doi:10.1103/PhysRevA.39.206
28. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, 1976.