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Abstract—Quantum-based systems are an emerging topic of research due to their potential for
increasing performance in a variety of classical systems. In radar and communication systems, quantum
technologies have been explored in an effort to increase the correlation performance in the low signal-to-
noise ratio (SNR) regime. While this increase has been shown both mathematically and in the laboratory
using bipartite states, systems utilizing multi-partite squeezing and entanglement may lead to an even
further performance increase. We investigate this by analyzing the correlation coefficient for a tripartite
system electric field measurement to determine how it compares to the bipartite systems in the current
literature for the same transmit powers. This is done by defining a tripartite wave function in terms of
the mean photon number per mode then determining the covariance matrix from this wave function.
This work is important in understanding how alternative states of light can be used for quantum radar
applications.

1. INTRODUCTION

Quantum radar has been a topic of interest in the field of quantum sensing in recent years due to various
benefits over a classical system, in particular, the ability to achieve a higher correlation in the low
signal-to-noise ratio regime. While these benefits have been demonstrated both through simulation [1–
7] and in experiments [8–12], the lack of transmit power currently available for a two-photon entangled
source limits the application of the technology. To date, almost all quantum radar analysis has been
restricted to bipartite states, whereby the signal and idler beam have one photon originating from the
pair produced during the generation process. These two-photon quantum radar systems work using
spontaneous parametric down conversion. In this paper, we explore the possible benefits of using a
tripartite state to perform ranging [13–16] by investigating whether the extra photon yields correlation
benefits or other advantages of the return signal.

The current quantum radar design uses spontaneous parametric down conversion (SPDC) where
one high energy photon is split into two photons of half the original energy. With this, one of the
photons created is kept as an idler and the other is sent at the target as the signal. When the signal
returns, a correlation method is used to determine if the returning photons are from the original signal.
This bipartite quantum system has shown a 3-dB improvement in the error exponential which means
that it has better detection in high noise environments [17–22]. Similarly to the two-photon method,
the three-photon method looks to obtain a quantum advantage through the use of signal and idler
beams. However, with the tripartite state we are able to transmit two signals that are correlated with
a single idler. We believe that this arrangement with a single idler could lead to benefits in correlation
performance in lossy channels. We seek to explore whether having more photons per generation leads to
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correlation benefits of the returned beams. Conventional SPDC methods can only create equal photon
number states on each branch of the photon generation, namely one photon each for the signal and
idler, two photons each, three photons each, and so on [2]. These higher number states are increasingly
less probable to generate and although they would possess more photons per generation, there would
be less photons overall. A state specifically constructed to be tripartite (three-particles) can potentially
alleviate this problem by using a different experimental setup entirely for the generation, keeping the
same detection paradigm as bipartite systems, namely, storing or detecting the idler photon [1, 2, 23]
and then later measuring the returned signal photons. However, in our tripartite case, each idler can
correlate with two returning signal photons. In the setup described here, this would be done with a
single detector for the signals and another detector to immediately detect the idler.

The ideas in this paper are based on our previous work, where we investigated immediate-idler-
detection methods [2, 24]. To summarize, we found that one can obtain the same covariance expression
using immediate idler detection, as obtained through joint measurement. This was done by measuring
and correlating a large set of electric field measurements (bulk or quadrature). It is for this reason we
choose to measure electric field in this paper. Number operator measurements led to very similar, but
different values of covariance and correlation.

Here, we mathematically evaluate a tripartite radar system using a coupled three mode squeezed
state introduced by Zhang and Glaser [25] which is generated through the use of an Rb atomic vapor
and a four-wave-mixing process. For this calculation, we assume that the target is ideal (perfectly
reflective). In this scheme, two lasers are used with non-linear crystals and one path from each of
the signal idler pairs are mixed to create three part entanglement. In our evaluation, we solve for all
parts of the covariance matrix and determine the covariance between the signal and idler beams for
the system. Additionally, we simulate the correlation coefficient to be able to directly compare to the
current literature. After we have determined the correlation coefficients of each of the path, we then
compare it to the current bipartite system. To do this, we define a detection scheme for the tripartite
system that will allow for an apples-to-apples comparison.

2. TRIPARTITE DERIVATION

The following tripartite derivation is made of two parts. First, we define the wave function in terms of
the mean photon number per mode for each of the paths to allow for an easier comparison to transmit
power. Secondly, the wave function in terms of the mean photon number per mode is used to derive
the covariance matrix for the system.

2.1. Wave Function Derivation in Terms of Mean Photon Number Per Mode

We begin with a coupled three-mode squeezed vacuum state [25].

|Ψ⟩ = 1

cosh(r)
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n,l

(−1)n+1ei(nθ1+lθ2)
(r1
r
tanh(r))n(

r2
r
tanh(r)

)l√(n+ l)!

n!l!
|n, n+ l, l⟩s1,i,s2 (1)

where r1 and r2 are the squeezing factors, r =
√

r21 + r22, and θ1 and θ2 are the phase terms.
The first task is to rewrite cosh(r) and tanh(r) in terms of the mean photon number per mode

as is commonly done for the bipartite two mode squeezed light frequently used in quantum radar
analysis [1, 2, 4, 13, 17]. In our case however, each branch will, in general, be a different mean photon
number per mode, which we denote as Ns1 , Ns2 , and Ni for signal 1, signal 2, and the idler respectively.
This allows for the covariance to be more directly comparable to the power level of each beam because
these values directly relate to the amount of photons transmitted.

Since the tripartite implementation consists of three beams, there are multiple combinations of
beams one can keep at the radar and send into free space. We propose the following system which uses
two of the photon paths as signals and one of the photon paths as an idler. The reasoning behind this
choice is to send as much energy into the free space path as possible to increase transmit power. We
also choose to use the electric field which corresponds to the use of balanced homodyne detection.
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First, the evaluation of the mean idler photon number, Ni = â†i âi:

⟨Ψ|âiâ†i |Ψ⟩ = 1

cosh2(r)

∞∑
m,k

∞∑
n,l

ei(nθ1+lθ2)e−i(mθ1+kθ2)

(
rn+m
1

r2
tanh(n+m)(r)

)(
rl+k
2

r2
tanh(l+k)(r)

)

×
√

(n+ l)!

n!l!

√
m! + k!

m!k!
(n+ l)⟨m,m+ k, k|n, n+ l, l⟩ (2)

Orthogonality causes m = n and k = l which yields:
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The above double summation can be evaluated by first applying different values of n to the formula,
then evaluating the resulting sums over l. Doing this for the first few values of n gives (denoting each
partial sum as Fn):
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Given the above pattern of partial sums, the general formula is found to be:
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The above sum can be evaluated and yields:

⟨Ψ|âiâ†i |Ψ⟩ = Ni = sinh2(r) (6)

Next, the mean photon number per mode of one of the signal beams is evaluated in a similar manner
as the previous case, which yields:

⟨Ψ|âs1 â†s1 |Ψ⟩ = Ns1 =
sinh2(r)r22

r2
(7)

Furthermore, evaluating âs2 â
†
s2 in a similar manner gives:

⟨Ψ|âs2 â†s2 |Ψ⟩ = Ns2 =
sinh2(r)r21

r2
(8)

In order to write tanh(r) and cosh(r) in terms of Ni, Ns1 , and Ns2 , we start by solving Equation (6)
for cosh(r):

Ni = sinh2(r) = cosh2(r)− 1 → cosh(r) =
√

Ni + 1 (9)

We then solve for tanh(r) by dividing Equation (6) by Equation (9) which yields:√
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2
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One can also obtain this result in reference to the other signal beam by dividing Equation (6) by
Equation (8): √
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2
= tanh(r) (11)

Using the terms found for tanh(r) in (10) and for cosh(r) in (9), we can now write the wave function in
terms of the mean photon number per modes for the paths:
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2.2. Covariance Matrix

Now that we have obtained for the wave function in terms of the mean photon number per modes for
the individual beams, we can now calculate the terms in the covariance matrix, namely:

V =

 ⟨E2
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where Ex is the electric field operator for the idler, first signal path, or second signal path (x = i, s1,
and s2 respectively) defined by [26]:

E(r, t) =
∑
k

ϵ̂kEkake−iχ + ϵ̂kEka†ke
iχ (15)

where âk is the frequency mode’s creation operator; k is the wave vector; and χ is the phase (which we
can suppress by assuming that the signal and idler are aligned in time and space via shifting the data
or using a delay line), ϵ̂k is a unit polarization vector, given by

Ek =

(
~νk
2ϵ0V

) 1
2

(16)

where ~ is the Planck’s constant divided by 2π; νk is the frequency associated with the momentum mode
k; ϵ0 is the permittivity of free space; and V is the quantization volume. Ek will be suppressed since it will
be canceled in the final correlation calculations due to the fact these correlations are normalized. This
will allow for greater calculation simplicity and easier to understand solutions. The integral formalism
is also not required for the solution as we assume the field is approximately monochromatic (a single
momentum mode) where future work will look at a full band signal. For an aligned signal and idler
measurement with a linear polarization, Equation (15) reduces to:

Ê = â+ â† (17)

It should be noted that the physically realizable version of these calculations is a tensor product
between Equation (1) and the thermal noise state. Formally, this calculation is done with a density
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matrix approach [5, 27], where we first determine the density matrix for the coupled three-mode squeezed
vacuum state:
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and the density matrix for the thermal noise state [27, 28]:
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where NT is the mean photon number of the thermal state. The return density matrix is defined as:
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which can be shown to be approximately valid in the high-noise regime.
The evaluation begins by looking at the on-diagonal terms for this matrix, which amounts to the

variance of the respective beams. Beginning with the E2
i term:
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Now we will look at the two signal paths beginning with E2
s1 . These terms differ from the idler path

because the signal paths will have an added noise terms as these beams propagate in free space.
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where as1 , as2 , and aB are the field mode operators for signal 1, signal 2, and the noise state, respectively.

Using the orthogonality conditions we determine that the only non-zero terms are â†s1 âs1 , âs1 â
†
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Using this, the variance term of the first signal path is found to be:
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Now we will look at the first cross-correlation term in our covariance matrix, but first it should
be noted that the final covariance matrix is simplified because it can be shown that the electric fields
between branches commute due to the differing mode operator commutators.

This allows us to simply solve for only three cross-correlation terms instead of the six that are in
the matrix; in other words, the covariance matrix is symmetric.

We now determine ER1ER2 , where we again use the orthonormality of the Fock state basis to find

the non-zero terms. These terms are found to be â†s1 âs2 and âs1 â
†
s2 with coefficients κ
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we also see that the function for â†s1 âs2 is:
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These equations are not able to be solved trivially using the methods from Equations (2) to (4). To
solve this, we must numerically calculate the resulting expressions because it does not have a closed
form evaluation of the sums. We use the above results together to write:
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We now evaluate Es1Ei, where again the signal has an added noise term:
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†
i +

√
1− κâ†B1
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We again use a general formula to solve this similar to Equation (4) and find the solution to be:
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Finally, we calculate Es2Ei and determine it to be:
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Combining the solutions to these terms and putting them into the covariance matrix discussed earlier,
we obtain the matrix seen in Equation (33).
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where for the ease of reading, the elements of the matrix are listed below in Equation (34):
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3. ANALYSIS

Now that the tripartite covariance matrices have been derived, we plot the correlations at various
transmissivities in Figure 1. These correlations are solved using the covariances and variances, σ:

rxy =
cov(x, y)√

σ2
xσ

2
y

(35)

where the horizontal and vertical axes are r1 and r2, respectively. Here one can see that the correlations
between the idler and the individual signal paths are higher than just the signal paths. This may be
due to the idler being created through a mixing of the signal paths and the signal paths being created
through independent lasers.

Figure 1. Correlations of the three path combinations in terms of r1 and r2, NB = 10.

Next, we define a detector function that will allow for the system to yield the best possible
performance. This detector function is designed to keep the two signals together and correlate them
both with the idler at the same time.

To define this system mathematically, we begin with the formula to determine the correlation shown
in Equation (35) and applying the tripartite system we obtain the detector function:

rdf =
⟨(Es1 + Es2)Ei⟩√

⟨E2
i ⟩⟨E2

s1 + E2
s2 + Es1Es2⟩

(36)

where each part of this function has been previously solved and is plotted in Figure 2 at κ = .07, .4,
and .7. One can see that as the environment becomes more transmissive (i.e., higher κ), the correlation
increases. One can also see that based on the correlations determined from the detector function,
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Figure 2. Correlations for for the tripartite system using the detector function at various
transmissivities, NB = 10.

changing r1 independently does not have the same effect on the correlation as r2. Due to this and
the relationship between the individual squeezing factors, one value of Ns can have multiple different
correlations. For example, r1 = 1.5 and r2 = 1 have a different correlation from r1 = 1 and r2 = 1.5,
but will have the same Ns. To alleviate these degeneracies in the plot, we show the case where r1 = r2
in Figure 3 where it is plotted in comparison to the known bipartite correlation coefficient [24]. One
can see that much like current quantum radar systems, the system is more effective at lower signal
powers; however, compared to the bipartite system, it does not obtain as high of a correlation. One
can also see that the bipartite system continues at higher Ns to have the high correlation, while the
tripartite system falls off at high Ns, which again may be due to how Ns is defined. This means that
for the tripartite system there is a finite region of significant correlation and increasing the squeezing
factor does not always increase the correlation, while the bipartite system continues increasing as the
squeezing factor increases until the correlation becomes 1.

Figure 3. Correlations for the tripartite system when r1 = r2 versus the bipartite system, NB=10.

4. CONCLUSION

In this paper we derived the electric field covariance matrix for the tripartite quantum radar system.
We then showed that with a combined electric field measurement we are able to obtain correlations
between the different beam paths where, like bipartite quantum radar, the correlations are higher at
lower power. However, at higher power levels, these correlations seem to fall off.

From these correlations, it was found that all three paths have correlations with each other which
could be useful in creating new detection functions that could be used within a radar or quantum



Progress In Electromagnetics Research M, Vol. 115, 2023 91

communication system to prevent eavesdropping and increase security.
Overall it seems that the tripartite quantum system is viable for use in correlation based tasks,

but lacks in comparison to the current two photon systems. Although, due to the addition of the third
photon, a tripartite system may be able to obtain higher Ns compared to the bipartite system.
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