Vol. 115
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-03-10
An Optimal Sparse Reconstruction Algorithm in Synthetic Aperture Interferometric Radiometer (SAIR)
By
Progress In Electromagnetics Research M, Vol. 115, 151-162, 2023
Abstract
Synthetic aperture interferometric radiometer (SAIR) requires lots of antennas, receivers, and correlators to accurately reconstruct the brightness temperature (BT) distribution of the scene. Aiming to reduce the complexity of the hardware requirements in SAIR system while maintaining the image quality, a new optimal sparse reconstruction method is developed in this paper. Different from the existing imaging methods, the proposed method constructs the optimal receiving array with a few elements by evaluating the mutual coherence and the array factor of the sensing matrix in SAIR system, so as to achieve high-quality reconstruction of the BT image. Numerical simulations and experiments demonstrate that the proposed method can reconstruct the BT image by solely using a few receivers with higher image fidelity than the competing methods.
Citation
Zilong Zhao, Zhongjian Fu, Jinguo Wang, Zhaozhao Gao, Jie Gu, Shiwen Li, Bo Qi, and Fan Jiang, "An Optimal Sparse Reconstruction Algorithm in Synthetic Aperture Interferometric Radiometer (SAIR)," Progress In Electromagnetics Research M, Vol. 115, 151-162, 2023.
doi:10.2528/PIERM22123005
References

1. Camps, A., J. Bara, I. C. Sanahuja, and F. Torres, "The processing of hexagonally sampled signals with standard rectangular techniques: Application to 2-D large aperture synthesis interferometric radiometers," IEEE Trans. Geoscience and Remote Sensing, Vol. 35, No. 1, 183-190, 1997.
doi:10.1109/36.551946

2. McMullan, K. D., M. A. Brown, M. Martin-Neira, W. Rits, S. Ekholm, J. Matri, and J. Lemanczyk, "SMOS: The payload," IEEE Trans. Geoscience and Remote Sensing, Vol. 46, No. 3, 594-605, 2008.
doi:10.1109/TGRS.2007.914809

3. Gaier, T., P. Kangaslahti, B. Lambrigtsen, I. Ramos-Perez, A. Tanner, D. McKague, C. Ruf, M. Flynn, Z. Zhang, R. Backhus, and D. Austerberry, "A 180 GHz prototype for a geostationary microwave imager/sounder-GeoSTAR-III," 2016 IEEE International Geoscience and Remote Sensing Symposium, 2021-2023, 2016.
doi:10.1109/IGARSS.2016.7729521

4. Kpré, E. L. and C. Decroze, "Passive coding technique applied to synthetic aperture interferometric radiometer," IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 8, 1193-1197, 2017.
doi:10.1109/LGRS.2017.2700953

5. Kpré, E. L. and C. Decroze, "Synthetic aperture interferometric imaging using a passive microwave coding device," 2016 IEEE Conference on Antenna Measurements Applications (CAMA), Oct. 23-27, 2016.

6. Kpré, E. L. and C. Decroze, "Passively coded synthetic aperture interferometric radiometer (CSAIR): Theory and measurement results," European Conference on Antennas and Propagation, Mar. 23-27, 2017.

7. Wikner, D. A., A. R. Luukanen, V. Chauhan, K. Greene, and B. Floyd, "Code-modulated interferometric imaging system using phased arrays," Proc. SPIE, Vol. 9830, 98300D.1-98300D.8, 2016.

8. Zhang, C., H. Liu, L. Niu, and J. Wu, "System design and preliminary tests of an L-band clock scan microwave interferometric radiometer," 2017 International Geoscience and Remote Sensing Symposium, 715-718, 2017.
doi:10.1109/IGARSS.2017.8127052

9. Zhang, C., H. Liu, L. Niu, and J. Wu, "CSMIR: An L-band clock scan microwave interferometric radiometer," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-9, 2018.
doi:10.1109/JSTARS.2018.2837222

10. Li, S., X. Zhou, B. Ren, H.-J. Sun, and X. Lv, "A compressive sensing approach for synthetic aperture imaging radiometers," Progress In Electromagnetics Research, Vol. 135, 583-599, 2013.
doi:10.2528/PIER12110603

11. Wang, J., Z. Gao, J. Gu, S. Li, X. Zhang, Z. Dong, Z. Zhao, F. Jiang, B. Qi, and P. Xian, "A new passive imaging technique based on compressed sensing for synthetic aperture interferometric radiometer," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 11, 1938-1942, 2020.
doi:10.1109/LGRS.2019.2958033

12. Zhang, Y., "A robust reweighted L1-minimization imaging algorithm for passive millimeter wave SAIR in near field," Sensors, Vol. 15, No. 10, 24945-24960, 2015.
doi:10.3390/s151024945

13. Chen, J., Y. Li, J. Wang, and Y. Li, "A compressive sensing imaging algorithm for millimeter-wave synthetic aperture imaging radiometer in near-field," 2013 Asia-Pacific Microwave Conference Proceedings, 972-974, 2013.
doi:10.1109/APMC.2013.6694993

14. Corbella, I., N. Duffo, M. Vall-llossera, et al. "The visibility function in interferometric aperture synthesis radiometry," IEEE Trans. Geoscience and Remote Sensing, Vol. 42, No. 8, 1677-1682, Aug. 2004.
doi:10.1109/TGRS.2004.830641

15. Figueiredo, A. T., R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 586-597, 2007.
doi:10.1109/JSTSP.2007.910281

16. Candès, E. J. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, Mar. 2008.
doi:10.1109/MSP.2007.914731

17. Romberg, J., "Imaging via compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 14-20, 2008.
doi:10.1109/MSP.2007.914729

18. Tropp, J. and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Information Theory, Vol. 53, No. 12, 4655-4666, Dec. 2007.
doi:10.1109/TIT.2007.909108

19. Obermeier, R. and J. A. Martinez-Lorenzo, "Sensing matrix design via mutual coherence minimization for electromagnetic compressive imaging applications," IEEE Trans. on Computational Imaging, Vol. 3, No. 2, 217-229, 2017.
doi:10.1109/TCI.2017.2671398

20. Wu, J., C. Zhang, H. Liu, and J. Yan, "Performance analysis of circular antenna array for microwave interferometric radiometers," IEEE Trans. Geoscience and Remote Sensing, Vol. 55, No. 6, 3261-3271, 2017.
doi:10.1109/TGRS.2017.2667042